Black hole entropy and anomalies

Per Kraus, UCLA

hep-th/0506176, 0508218 with F. Larsen.

Introduction

 Recent work has provided a detailed match between micro/macro computations of black hole entropy. Subleading corrections to Bekenstein-Hawking formula:

$$S(Q) = \frac{A(Q)}{4} \left(1 + \frac{c_1}{Q} + \frac{c_2}{Q^2} + \dots \right) + c_0 \ln Q$$

Cardoso, de Wit, Kappeli, Mohaupt; Wald; Ooguri, Strominger, Vafa; Dabholkar, Denef, Moore, Pioline; Sen; ...

- Also have results when "corrections" are leading effect, e.g. fundamental heterotic string.
- Connection to topological string via OSV conjecture.
- Agreement at first seems mysterious, since higher derivatives are included in non-systematic way (only F-terms).
- I'll argue that agreement has origin in exact statements about anomalies. Also use underlying AdS₃ geometry.
- Generalizes to non-BPS black holes. Heterotic strings with both left and right moving excitations.

 Black hole entropy and anomalies - p. 2/2

Overview

- General comments on micro/macro comparisons
- Entropy in general higher derivative theories
- Use of gravitational anomalies
- Examples
- Holography in presence of gravitational anomalies

Microscopic degeneracy

- Consider bound state degeneracy of BPS system of branes.
 Counting done in worldvolume CFT
- Two kinds of charges

Heavy charges P: define CFT (e.g. D1-D5)

Light charges Q: excitations in CFT (e.g. momentum)

Natural object is "mixed" partition function

$$Z_{\text{CFT}}(P,\phi) = \sum_{Q} \Omega_{\text{CFT}}(P,Q)e^{-\phi \cdot Q}$$

Degeneracies $\Omega_{\text{CFT}}(P,Q)$ recovered by inverse Laplace transform.

For CFT dual to CY black holes considered here, have

$$\ln Z_{\text{CFT}}(P,\phi) = \frac{\pi}{6\phi^0} \left(C_{IJK} P^I P^J P^K + \frac{1}{2} c_{2I} P^I \right) - \frac{\pi}{2} \frac{C_{IJ} \phi^I \phi^J}{\phi^0} + \dots$$

Accounts for power law corrections to degeneracies. Omitted terms suppressed for small ϕ_0 .

Black hole entropy and anomalies – p. 4/2

Macroscopic degeneracy

- Near horizon geometry: $AdS_3 \times S^p \times X$. AdS_3 black hole reduces to AdS_2 upon KK reduction.
- Have standard AdS partition function $Z_{\mathrm{AdS}}(P,\phi)$ where Heavy charges P: set size of AdS potentials ϕ : boundary conditions for sugra fields
- Full partition function is

$$Z_{\text{AdS}}(P,\phi) = \sum_{\text{geometries}} \int \prod_{i} \mathcal{D}\Phi_{i} \ e^{-S}$$

- Sum over all geometries with specified boundary conditions.
 Integrate over fluctuations of massive and massless string modes, including string/brane instantons.
- Too hard. But to reproduce $\frac{1}{\phi^0}$ terms just need local contributions from sugra action, including all higher derivative terms from integrating out massive modes.

Topological string captures contributions of form

$$\mathcal{L} \sim \sum_{g} c_g R^2 W^{2g-2} + \dots$$

Including just these terms reproduces CFT partition function.

- Doesn't capture other terms, e.g. \mathbb{R}^4 . Such terms do contribute individually at this order, and would seem to spoil agreement.
- What's going on? Answer: local part of partition function governed by symmetries and anomalies. Top. string gets these right. All other terms will cancel — nonrenormalization.
- Argument uses susy of underlying theory, but results can be applied to compute entropy of non-susy black holes in these theories.

Black hole entropy and higher derivatives (see also Sen, hep-th/0506177)

Focus on cases with IR geometry

$$AdS_3 \times S^P \times X$$

Canonical example: M-theory on CY₃ with wrapped M5-branes and M2-branes. Related via dualities to examples including

heterotic string on
$$\,T^5$$
 D1-D5 on $\,T^4 \times S^1$, K3 $\times S^1$

• Start with general diff. invariant theory admitting $AdS_3 \times S^P \times X$. Reduce to D = p + 3 action

$$I = \frac{1}{16\pi G_{p+3}} \int d^{p+3}x \sqrt{g} \,\mathcal{L}_{p+3} + S_{\text{bndy}} + S_{\text{CS}}$$

Assume solution:

$$ds^{2} = \ell_{AdS}^{2} d\hat{s}_{AdS}^{2} + \ell_{SP}^{2} d\hat{s}_{SP}^{2}$$

diff/gauge invariant quantities constant

Local variation of radii:

$$\delta I = \frac{1}{16\pi G_{p+3}} \int d^{p+3}x \left\{ \frac{\partial(\sqrt{g}\mathcal{L}_{p+3})}{\partial \ell} \delta \ell + \underbrace{\nabla_{\mu}(\cdots)} \delta \ell \right\}$$

$$= 0 \text{ by cov. constancy}$$

So radii found by extremizing central charge function

$$c(\ell_{\text{AdS}}, \ell_{\text{SP}}) = \frac{3\Omega_2\Omega_p}{32\pi G_{p+3}} \ell_{\text{AdS}}^3 \ell_{\text{SP}}^p \mathcal{L}_{p+3}$$

To understand prefactor consider

$$ds_{\text{AdS}}^2 = \ell_{\text{AdS}}^2 (d\eta^2 + \sinh^2 \eta d\Omega_2^2)$$

Regulate bulk action with finite η cutoff:

$$\delta I = -\frac{\Omega_2 \Omega_p \ell_{\text{AdS}}^3 \ell_{\text{Sp}}^p \mathcal{L}_{p+3}}{32\pi G_{p+3}} \delta \eta_{\text{max}}$$

• Think of CFT on S^2 . Conformal anomaly: $T_i^i = -\frac{c}{24\pi}R^{(2)}$. Gives

$$\delta I = \frac{1}{2} \int d^2x \sqrt{g} \, T^{ij} \delta g_{ij} = -\frac{c}{3} \delta \eta_{\text{max}}$$

Entropy from central charge

- Knowledge of central charge leads to black hole free energy.
- Recall relation between BTZ and thermal AdS (Maldacena, Strominger):

Related by modular transformation

$$au_{\mathrm{BTZ}} = -rac{1}{ au_{\mathrm{thermal}}}$$

• More generally have " $SL(2, \mathbb{Z})$ " family of black holes.

- Warmup: consider case where only charges are M, J.
- Think of geometries as contributions to partition function

$$Z = e^{-I} = \text{Tr } e^{2\pi i \tau (L_0 - \frac{c}{24}) - 2\pi i \overline{\tau} (\tilde{L}_0 - \frac{\tilde{c}}{24})}$$

Ignoring nonlocal contributions have

$$L_0^{\text{thermal}} = \tilde{L}_0^{\text{thermal}} = 0 \qquad \Rightarrow \qquad I_{\text{thermal}} = \frac{i\pi}{12} (c\tau - \tilde{c}\overline{\tau})$$
$$\Rightarrow \qquad I_{BTZ} = -\frac{i\pi}{12} (\frac{c}{\tau} - \frac{\tilde{c}}{\overline{\tau}})$$

Entropy follows from

$$\Omega = e^{S} = \int d\beta d\mu \, e^{-I_{\text{BTZ}} + \beta H + \mu J}$$
$$\tau = i(\beta - \mu)/2\pi$$

Saddle point evaluation gives Cardy formula:

$$S = 2\pi \left(\sqrt{\frac{c}{6}h_L} + \sqrt{\frac{\tilde{c}}{6}h_R} \right)$$

$$h_L = \frac{1}{2}(M-J), \quad h_R = \frac{1}{2}(M+J)$$

Comments

- Gives entropy for BTZ black hole in arbitrary diff. invariant theory. $S \neq \frac{A}{4}$ in general.
- Effect of higher derivatives absorbed into c, as determined by c-extremization.
- Saddle point result equivalent to Wald's formula

$$S = -\frac{1}{8G_D} \int_{\text{hor}} d^{D-2}x \sqrt{h} \, \frac{\delta \mathcal{L}_D}{\delta R_{\mu\nu\alpha\beta}} \epsilon^{\mu\nu} \epsilon^{\alpha\beta}$$

Show by using c-extremization and dim. analysis to write generalization of Brown-Henneaux result:

$$c = \frac{\ell_{\text{AdS}}}{2G_3} g_{\mu\nu} \frac{\partial \mathcal{L}_3}{\partial R_{\mu\nu}}$$

Find: Wald formula = Cardy formula (Saida, Soda).

Including other potentials

• Include gauge fields A^I_{μ} in AdS₃:

$$S_A \sim \int_{\text{AdS}} \left(F^I \wedge^* F^I + C_{IJ} A^I \wedge F^J \right) + \int_{\partial \text{AdS}} C_{IJ} A^I \wedge^* A^J$$

Boundary term needed for good variational principle. Boundary current becomes chiral $J_I(z)$, as in CFT.

• Satisfy boundary conditions with flat connection A_{μ}^{I} . Induces charge due to CS term:

$$Q_I \sim \int C_{IJ} A^J$$

Metric dependence of boundary term shifts stress tensor

$$\tilde{L}_0 \to \tilde{L}_0 + C_{IJ}A^IA^J$$

Repeating previous analysis now gives

$$I_{\text{BTZ}} = -\frac{i\pi}{12} \left(\frac{c}{\tau} - \frac{\tilde{c}}{\bar{\tau}}\right) + \frac{1}{\bar{\tau}} C_{IJ} A^I A^J$$

After relabelling,

$$\overline{\tau} \to \frac{i}{2} \phi^0, \quad A^I \to \phi^I$$

and specializing to extremal black hole $(\frac{1}{\tau} = 0)$, this agrees with CFT result

$$\ln Z_{\text{CFT}}(P,\phi) = \frac{\pi}{6\phi^0} \left(C_{IJK} P^I P^J P^K + \frac{1}{2} c_{2I} P^I \right) - \frac{\pi}{2} \frac{C_{IJ} \phi^I \phi^J}{\phi^0}$$

provided

$$\tilde{c} = C_{IJK}P^I P^J P^K + \frac{1}{2}c_{2I}P^I$$

• Summary: Computation of degeneracy, including subleading corrections boils down to computation of central charge \tilde{c} .

Central charge: two-derivative example

 Basic example: M-theory on CY₃. 2-derivative bosonic Lagrangian for gravity/vector multiplets:

$$-R + \frac{1}{2}G_{IJ}\partial_{\mu}X^{I}\partial^{\mu}X^{J} + \frac{1}{4}G_{IJ}F_{\mu\nu}^{I}F^{J\mu\nu} + \frac{1}{6}C_{IJK}F^{I} \wedge F^{J} \wedge A^{K}$$

Solution takes form (Gutowski, Reall; Gauntlett, Gutowski)

$$ds^{2} = f^{2}(dt + \omega)^{2} + f^{-1}ds_{B}^{2}$$

$$F^{I} = d[fX^{I}(dt + \omega)] + \Theta^{I}$$

with

$$\Theta^{I} = {}^{\star}\Theta^{I}
\nabla^{2}(f^{-1}X_{I}) = \frac{1}{4}C_{IJK}\Theta^{J} \cdot \Theta^{K}
d\omega + {}^{\star}d\omega = -f^{-1}X_{I}\Theta^{I}$$

 Take base to be Taub-NUT, and solve in terms of 4 sets of harmonic functions

$$H^{I} \sim M5-\text{branes}$$
 $H_{I} \sim M2-\text{branes}$
 $H^{0} \sim KK-\text{monopole}$
 $H_{0} \sim \text{momentum}$

- IIA interpretation in terms of D0-D2-D4-D6-P black hole.
- Simplest to set number of KK-monopoles (D6-branes) to zero.
- Get near horizon geometry (locally)

$$AdS_3 \times S^2 \times CY_3$$

"Heavy" charges are M5-branes wrapped on 4-cycles

$$P^{I} = -\frac{1}{2\pi} \int_{S^{2}} F^{I}$$

c-extremization gives

$$c = \tilde{c} = C_{IJK} P^I P^J P^K$$

- Theory has (4,0) superconformal symmetry.
- To compute corrections using c-extremization we need full Lagrangian.

Corrections and nonrenormalization

- At 2-derivative order theory has solution $AdS_3 \times S^2 \times X$ with (4,0) superconformal symmetry.
- Assume this persists in presence of higher derivatives.
- Observation (Harvey, Minasian, Moore): symmetries relate central charges to M5-brane grav. anomalies.
- c related by symmetry to $SU(2)_R$ anomaly. $c \tilde{c}$ given by gravitational anomaly. Corrections to both given by single R^2 term in D = 5. No further corrections.
- Conclusion: \mathbb{R}^2 terms which have been studied preserve symmetry and account for anomaly, so give exact result.
- Individual \mathbb{R}^4 terms can correct central charge, but complete set consistent with (4,0) symmetry will give zero.

(Maldacena, Strominger, Witten; Harvey, Minasian, Moore)

• Geometry and central charge are corrected by higher derivative terms. Correction to central charge follows from D=11 term

$$\epsilon_{11}C_3 \left[\operatorname{Tr} R^4 - \frac{1}{4} (\operatorname{Tr} R^2)^2 \right]$$

Coefficient known from M5-brane anomaly cancellation (Vafa, Witten; Duff, Liu, Minasian)

• Reduce to D=5 in presence of M5-brane wrapping 4-cycle $P_0=P_0^I\sigma_I$

$$S_{\text{anom}} = \frac{c_2 \cdot P_0}{48} \int A \wedge \underbrace{p_1}_{\text{1st}_{\text{Pontryagin}}} = \frac{1}{2} \left(\frac{1}{2\pi}\right)^2 \frac{c_2 \cdot P_0}{4\pi} \int F \wedge \underbrace{\omega_3}_{\text{Lorentz CS}}$$

Bulk action not invariant under local Lorentz transformations:

$$\delta\omega = d\Theta + [\omega, \Theta]$$

Pick up contribution at AdS₃ boundary

• D = 1 + 1 gravitational anomaly:

$$\delta S_{\text{anom}} = -\frac{1}{2} \frac{c_2 \cdot P}{48} \frac{1}{2\pi} \int_{\partial \text{AdS}_3} \text{Tr} \left(\Theta d\omega\right)$$

• Compare to variation of (4,0) CFT partition function

$$-\delta \ln Z_{CFT} = \frac{c - \tilde{c}}{48} \frac{1}{2\pi} \int_{\partial AdS_3} \text{Tr} (\Theta d\omega)$$

$$\Rightarrow c - \tilde{c} = -\frac{1}{2} c_2 \cdot P$$

R-symmetry anomaly (diffeomorphisms on sphere) gives shift in c

$$\Delta c = \frac{1}{2}c_2 \cdot P$$

• Exact central charges are then (Maldacena, Strominger, Witten; Harvey, Minasian, Moore)

$$c = C_{IJK}P^{I}P^{J}P^{K} + \frac{1}{2}c_{2} \cdot P$$

$$\tilde{c} = C_{IJK}P^{I}P^{J}P^{K} + c_{2} \cdot P$$

Application: heterotic string spectrum

$$c_2(K3) = 24 \implies c = 12w, \quad \tilde{c} = 24w$$

Corresponds to transverse left and right movers on heterotic worldsheet.

 Saddle point entropy of small BPS black hole yields entropy of DH states (Dabholkar)

$$S = 2\pi \sqrt{\frac{\tilde{c}}{6}h_R} = 4\pi \sqrt{nw}$$

Power law corrections reproduced upon fixing gauge potentials and performing $d\phi$ integral (Dabholkar, Denef, Moore, Pioline)

 Can also consider non-extremal small black hole vs. non-BPS heterotic states:

$$S = 2\pi\sqrt{2}\sqrt{wh_L} + 4\pi\sqrt{wh_R}$$

Holography with gravitational anomalies

Gravity with negative Λ:

$$S = \frac{1}{16\pi G} \int d^D x \sqrt{g} \left(R - 2\Lambda \right) + S_{\text{bndy}}$$

Metric admits Fefferman-Graham expansion

$$ds^{2} = d\eta^{2} + e^{2\eta/\ell} g_{ij}^{(0)} dx^{i} dx^{j} + g_{ij}^{(2)} dx^{i} dx^{j} + \dots$$

Stress tensor defined as variation of action (Balasubramanian, PK)

$$\delta S = \frac{1}{2} \int_{\partial AdS} d^{D-1} x \sqrt{g} \ T^{ij} \delta g_{ij}^{(0)}$$

$$D = 3: \quad T_{ij} = \frac{1}{8\pi G\ell} (g_{ij}^{(2)} - g_{k}^{(2)} g_{ij}^{(0)})$$

- Stress tensor obeys: $abla_i T^{ij} = 0, \ T^i_i = -rac{c}{12} R$ (Henningson, Skenderis).
- Brown-Henneaux formula: $c = \tilde{c} = \frac{3\ell}{2G}$.

Now add non diff. invariant term (Deser, Jackiw, Templeton)

$$S_{CS}(\Gamma) = \beta \int \text{Tr}(\Gamma d\Gamma + \frac{2}{3}\Gamma^3) \qquad (\Gamma^i_{\ j} = \Gamma^i_{jk} dx^k)$$

• Under $x^i \to x^i - \xi^i(x)$ action varies as

$$\delta S = \beta \int_{\partial AdS} \text{Tr}(vd\Gamma), \quad (v^i_{\ j} = \partial_j \xi^i)$$
 (Gen. coord. anomaly)

Implies nonconserved stress tensor

$$\nabla_i T^{ij} = g^{ij} \epsilon^{kl} \partial_k \partial_m \Gamma^m_{il}$$

• CFT has anomaly proportional to $c - \tilde{c}$. Find

$$c = c_0 + 48\pi\beta, \quad \tilde{c} = c_0 - 48\pi\beta$$

Full stress tensor is

$$T^{ij} = T_0^{ij} + \frac{2\beta}{\ell^2} (g_{(2)}^{ik} \epsilon^{lj} + g_{(2)}^{jk} \epsilon^{li}) g_{kl}^{(0)} + X^{ij} (g^{(0)})$$

• Apply to BTZ labelled by (m, j). Geometry uncorrected.

$$M = m - \frac{32\pi\beta G_3}{\ell^2}j, \quad J = j - 32\pi\beta G_3 m$$

• Global AdS₃ has $m = -1/8G_3$, j = 0:

$$M = -\frac{1}{8G_3}, \quad J = 4\pi\beta = \frac{c - \tilde{c}}{24}$$

BH entropy given by Cardy formula

$$S = 2\pi \left(\sqrt{\frac{c}{6}h_L} + \sqrt{\frac{\tilde{c}}{6}h_R} \right)$$

$$h_L = \frac{1}{2}(M\ell - J), \quad h_R = \frac{1}{2}(M\ell + J)$$

• Amusing example: $\beta = c_0/48\pi$

$$c = 96\pi\beta, \quad \tilde{c} = 0$$

Extremal black hole $M\ell - J = 0$ has nonzero horizon area but

$$S=0$$
.

Conclusions / Questions

- Symmetries and anomalies are very powerful in determining black hole entropy, including corrections.
- Need better understanding of non-perturbative effects related to exponentially small terms.
- Entropy of Type II strings / D1-D5 on T^4 remains to be understood. Gravitational anomaly vanishes.

Exact worldsheet analysis of spacetime central charge

(Kutasov, Seiberg; Kutasov, Larsen, Leigh)

Heterotic:
$$c = c_0 + 12$$
, $\tilde{c} = c_0 + 24$
Type II: $c = c_0$, $\tilde{c} = c_0$
 $c_0 = 6N_{NS5}N_{KK}$