Noncommutative motives,

Thermodynamics and the zeros of zeta

A. C. + C. Consani + M. Marcolli

Work in progress

Prime Numbers

$$
\pi(n)=\text { number of prime numbers } p \leq n
$$

$$
L i(x)=\int_{0}^{x} \frac{d u}{\log (u)} \sim \sum(k-1)!\frac{x}{\log (x)^{k}}
$$

$$
\pi(x)=\int_{0}^{x} \frac{d u}{\log (u)}+R(x)
$$

Riemann Conjecture :

$$
\begin{gathered}
R(x)=O(\sqrt{x} \log (x)) \\
\left(\pi(n)=2+\sum_{5}^{n} \frac{e^{2 \pi i\ulcorner(k) / k}-1}{e^{-2 \pi i / k}-1}, \quad\ulcorner(k)=(k-1)!)\right.
\end{gathered}
$$

Graphs of $\pi(x)$ and $\operatorname{Li}(x)$

Graph of $\pi(x)-\operatorname{Li}(x)$

Zeta Function

$$
\begin{gathered}
\zeta(s)=\sum_{1}^{\infty} n^{-s}=\prod_{\mathcal{P}}\left(1-p^{-s}\right)^{-1} \\
\zeta_{\mathbb{Q}}(s)=\pi^{-s / 2} \Gamma(s / 2) \zeta(s) \\
s \rightarrow 1-s
\end{gathered}
$$

Explicit Formula (Riemann)

$$
\begin{gathered}
\pi^{\prime}(x)=L i(x)-\sum_{\rho} L i\left(x^{\rho}\right) \\
+\int_{x}^{\infty} \frac{d u}{u\left(u^{2}-1\right) \log u}-\log 2 \\
\pi^{\prime}(x)= \\
\pi(x)+\frac{1}{2} \pi\left(x^{\frac{1}{2}}\right)+\frac{1}{3} \pi\left(x^{\frac{1}{3}}\right)+\cdots
\end{gathered}
$$

Explicit Formula (Weil)

$$
\widehat{h}(0)+\widehat{h}(1)-\sum_{\rho} \widehat{h}(\rho)=\sum_{v} \int_{K_{v}^{*}} \frac{h\left(u^{-1}\right)}{|1-u|} d^{*} u
$$

Quantum Chaos \rightarrow Riemann Flow ?

$$
\begin{gathered}
N(E)=\langle N(E)\rangle+N_{\operatorname{OSC}}(E) \\
\langle N(E)\rangle=\frac{E}{2 \pi}\left(\log \frac{E}{2 \pi}-1\right)+\frac{7}{8}+o(1)
\end{gathered}
$$

Sign Problem :

$$
\begin{aligned}
& N_{\mathrm{osc}}(E) \sim \frac{-1}{\pi} \sum_{p} \sum_{m=1}^{\infty} \frac{1}{m} \frac{1}{p^{m / 2}} \sin (m E \log p) \\
& N_{\mathrm{osc}}(E) \sim \frac{1}{\pi} \sum_{\gamma_{p}} \sum_{m=1}^{\infty} \frac{1}{m} \frac{1}{2 \operatorname{sh}\left(\frac{m \lambda_{p}}{2}\right)} \sin \left(m E T_{\gamma}^{\#}\right)
\end{aligned}
$$

Absorption Spectrum

Absorption

Emission

The two kinds of Spectra

\mathbb{Q}-Lattices $(\mathrm{ac}+\mathrm{mm})$

A \mathbb{Q}-lattice in \mathbb{R}^{n} is a pair (Λ, ϕ), with \wedge a lattice in \mathbb{R}^{n}, and

$$
\phi: \mathbb{Q}^{n} / \mathbb{Z}^{n} \longrightarrow \mathbb{Q} \wedge / \wedge
$$

a homomorphism of abelian groups.

Two \mathbb{Q}-lattices $\left(\Lambda_{1}, \phi_{1}\right)$ and $\left(\Lambda_{2}, \phi_{2}\right)$ are commensurable if the lattices are commensurable (i.e. $\mathbb{Q} \wedge_{1}=\mathbb{Q} \wedge_{2}$) and the maps agree modulo the sum of the lattices,

$$
\phi_{1} \equiv \phi_{2} \quad \bmod \wedge_{1}+\Lambda_{2}
$$

$X_{\mathbb{Q}}=$ space of 1-dimensional \mathbb{Q}-lattices modulo commensurability.

Spectral realization

Idele class group $\widehat{\mathbb{Z}}^{*} \times \mathbb{R}_{+}^{*}$ acts on $L^{2}\left(X_{\mathbb{Q}}\right)$ and zeros of L-functions give the absorption spectrum with non-critical zeros appearing as resonances.

$$
\begin{aligned}
& \operatorname{Trace}\left(R_{\wedge} U(h)\right)=2 h(1) \log ^{\prime} \wedge+ \\
& \qquad \sum_{v \in S} \int_{K_{v}^{*}}^{\prime} \frac{h\left(u^{-1}\right)}{|1-u|} d^{*} u+o(1)
\end{aligned}
$$

\int^{\prime} is the pairing with the distribution on k_{v} which agrees with $\frac{d u}{|1-u|}$ for $u \neq 1$ and whose Fourier transform relative to α_{v} vanishes at 1 .

Global Trace Formula $\Leftrightarrow \mathbf{R H}$

$\langle N(E)\rangle$ as symplectic volume $|h| \leq E$

$$
h(q, p)=2 \pi q p
$$

$$
\operatorname{Vol}\left(B_{+}\right)=\frac{E}{2 \pi} \times 2 \log \wedge-\frac{E}{2 \pi}\left(\log \frac{E}{2 \pi}-1\right)
$$

Global field of positive characteristic

k is the field of \mathbb{F}_{q} valued functions on C.

$$
\zeta_{k}(s)=\prod_{\Sigma_{k}}\left(1-q^{-f(v) s}\right)^{-1}
$$

$f(v)$ is the degree of the place $v \in \Sigma_{k}$.

Functional Equation

$$
q^{(g-1)(1-s)} \zeta_{k}(1-s)=q^{(g-1) s} \zeta_{k}(s)
$$

where g is the genus of C.

Cohomology and Frobenius

$$
\zeta_{k}(s)=\frac{P\left(q^{-s}\right)}{\left(1-q^{-s}\right)\left(1-q^{1-s}\right)}
$$

where P is the caracteristic polynomial of the action of the Frobenius Fr^{*} in $H_{\mathrm{et}}^{1}\left(\bar{C}, \mathbb{Q}_{\ell}\right)$.

The analogue of the Riemann conjecture for global fields of characteristic p means that the eigenvalues of the action of Fr^{*} in H^{1} i.e. the complex numbers λ_{j} of the factorization

$$
P(T)=\prod\left(1-\lambda_{j} T\right)
$$

are of modulus $\left|\lambda_{j}\right|=q^{1 / 2}$.
Proved by Weil (1942) (case $g=1$ by Hasse)

Frobenius in characteristic zero

$$
(\mathrm{ac}+\mathrm{cc}+\mathrm{mm})
$$

- Thermodynamics of noncommutative spaces

- Category of \wedge-modules $=$ abelian category ($\wedge=$ cyclic category)
- Endomotives

The KMS condition

$$
\begin{gathered}
\varphi\left(x^{*} x\right) \geq 0 \quad \forall x \in \mathcal{A}, \varphi(1)=1 . \\
\sigma_{t} \in \operatorname{Aut}(\mathcal{A})
\end{gathered}
$$

$$
F_{x, y}(t)=\varphi\left(x \sigma_{t}(y)\right)
$$

$$
F_{x, y}(t+i \beta)=\varphi\left(\sigma_{t}(y) x\right), \quad \forall t \in \mathbb{R}
$$

Cooling :

\mathcal{E}_{β} extremal KMS_{β} states, for $\beta>1$

$$
\rho: \mathcal{A} \rtimes_{\sigma} \mathbb{R} \rightarrow \mathcal{S}\left(\mathcal{E}_{\beta} \times \mathbb{R}_{+}^{*}\right) \otimes \mathcal{L}^{1}
$$

Distillation :
^-module $D(\mathcal{A}, \varphi)$ given by the Cokernel of the cyclic morphism given by the composition of ρ with the trace $\operatorname{Tr}: \mathcal{L}^{1} \rightarrow \mathbb{C}$

Dual action :

Spectrum of the canonical action of \mathbb{R}_{+}^{*} on the cyclic homology

$$
H C_{0}(D(\mathcal{A}, \varphi))
$$

Endomotives

A is an inductive limit of reduced finite dimensional commutative algebras over the field \mathbb{K} and S is a semigroup of algebra endomorphisms

$$
\begin{gathered}
\rho: A \rightarrow A \\
\mathcal{A}_{\mathbb{K}}=A \rtimes S
\end{gathered}
$$

Prototype Example :

Endomorphisms of an algebraic variety (group),

$$
\begin{gathered}
X_{s}=\{y \in Y: s(y)=*\} \\
X_{s r} \ni y \mapsto r(y) \in X_{s} \\
X=\check{\lim }_{s} X_{s} \\
\xi_{s u}\left(\rho_{s}(x)\right)=\xi_{u}(x)
\end{gathered}
$$

Explicit Formula $=$ Trace Formula $(\mathrm{ac}+$ rm + cc +mm)
$\operatorname{Trace}_{H^{1}}(h)=\widehat{h}(0)+\widehat{h}(1)-\sum_{v} \int_{K_{v}^{*}} \frac{h\left(u^{-1}\right)}{|1-u|} d^{*} u$
were the last term $\sum_{v} \int_{K_{v}^{*}} \frac{h\left(u^{-1}\right)}{|1-u|} d^{*} u$ is the intersection number

$$
Z(h) \bullet \Delta
$$

$$
\begin{gathered}
\operatorname{Trace}_{H^{1}}(h)=\widehat{h}(0)+\widehat{h}(1)-\Delta \bullet \Delta h(1) \\
-\sum_{v} \int_{\left(K_{v}^{*}, e_{K v}\right)} \frac{h\left(u^{-1}\right)}{|1-u|} d^{*} u
\end{gathered}
$$

Unramified extensions $K \rightarrow K \otimes_{\mathbb{F}_{q}} \overline{\mathbb{F}}_{q}$
Analogue for \mathbb{Q} of $K \rightarrow K \otimes_{\mathbb{F}_{q}} \overline{\mathbb{F}}_{q}$

Global field K	Factor M
$\operatorname{Mod} K \subset \mathbb{R}_{+}^{*}$	$\operatorname{Mod} M \subset \mathbb{R}_{+}^{*}$
$K \rightarrow K \otimes_{\mathbb{F}_{q}} \mathbb{F}_{q^{n}}$	$M \rightarrow M \rtimes_{\sigma_{T}} \mathbb{Z}$
$K \rightarrow K \otimes_{\mathbb{F}_{q}} \overline{\mathbb{F}}_{q}$	$M \rightarrow M \rtimes_{\sigma} \mathbb{R}$
Points $C\left(\overline{\mathbb{F}}_{q}\right)$	$\Gamma \subset X_{\mathbb{Q}}$

The subspace $\Gamma_{\mathbb{Q}} \subset X_{\mathbb{Q}} \backslash C_{\mathbb{Q}}$

$$
\begin{gathered}
\Gamma_{\mathbb{Q}}=\cup_{\Sigma_{\mathbb{Q}}} C_{\mathbb{Q}}[v] \subset X_{\mathbb{Q}} \\
{[v]_{w}=1, \quad \forall w \neq v, \quad[v]_{v}=0}
\end{gathered}
$$

...... Log P Log7, Log5, Log3, Log2.

Weil's proof

The proof of RH rests on two results

- (A) Positivity : Trace $\left(Z \star Z^{\prime}\right)>0$ unless Z is a trivial class.
- (B) Explicit Formula
$\#\left\{C\left(\mathbb{F}_{q^{j}}\right)\right\}=\sum(-1)^{k} \operatorname{Tr}\left(\operatorname{Fr}^{* j} \mid H_{\mathrm{et}}^{k}\left(\bar{C}, \mathbb{Q}_{\ell}\right)\right)$

The role of the positivity condition (A) in Weil's proof is contained in the following :

The following two conditions are equivalent :

- All L functions with Grössencharakter on K satisfy the Riemann Hypothesis.
- $\operatorname{Trace}_{H^{1}}\left(f \star f^{\sharp}\right) \geq 0$ for all $f \in \mathcal{S}\left(C_{K}\right)$.

$$
f \rightarrow f^{\sharp}, \quad f^{\sharp}(g)=|g|^{-1} \bar{f}\left(g^{-1}\right)
$$

Weil's proof : Correspondences

$$
\begin{gathered}
Z: C \rightarrow C, P \rightarrow Z(P) \\
U \sim V \Leftrightarrow U-V=(f) \\
Z=Z_{1} \star Z_{2}, \quad Z_{1} \star Z_{2}(P)=Z_{1}\left(Z_{2}(P)\right) \\
Z^{\prime}=\sigma(Z) \\
d(Z)=Z \bullet(P \times C), \quad d^{\prime}(Z)=Z \bullet(C \times P)
\end{gathered}
$$

Weil defines the Trace of a correspondence as follows

$$
\operatorname{Trace}(Z)=d(Z)+d^{\prime}(Z)-Z \bullet \Delta
$$

where Δ is the identity correspondence and • is the intersection number.

Proof of positivity (A)

In any (correspondence class)/(trivial ones) one finds a representative Z such that

$$
Z>0, \quad d(Z)=g
$$

Writing $Z(P)=Q_{1}+\cdots+Q_{g}, Z \star Z^{\prime}(P)$ is the locus of $\sum Q_{i} \times Q_{j}$,

$$
\begin{gathered}
Z \star Z^{\prime}=d^{\prime}(Z) \Delta+Y \\
Y \bullet \Delta \leq(4 g-4) d^{\prime}(Z), \\
K(P)=\operatorname{det}\left\{f_{i}\left(Q_{j}\right)\right\}^{2} \\
\Delta \bullet \Delta=2-2 g
\end{gathered}
$$

Trace $\left(Z \star Z^{\prime}\right)=2 g d^{\prime}(Z)+(2 g-2) d^{\prime}(Z)-Y \bullet \Delta$
$\geq(4 g-2) d^{\prime}(Z)-(4 g-4) d^{\prime}(Z)=2 d^{\prime}(Z) \geq 0$ because $d^{\prime}(Z) \geq 0$ since Z is effective.

Virtual correspondences	bivariant class Γ
Degree of correspondence	Pointwise index $d(\Gamma)$
$\operatorname{deg} D(P) \geq g \Rightarrow \sim$ effective	$d(\Gamma)>0 \Rightarrow \exists K, \Gamma+K$ onto
Adjusting the degree by trivial correspondences	Fubini step on the test functions
Frobenius correspondence	bivariant element $\Gamma(h)$

