IR Dynamics and Supersymmetry Breaking from D-branes at singularities

Angel M. Uranga

TH Division, CERN and IFT-UAM/CSIC, Madrid

Based on:

- S.Franco, A. Hanany, F. Saad, A. U, hep-th/0505040 S.Franco, A.U, hep-th/0604136
- I. García-Etxebarria, F. Saad, A. U, hep-th/0605166
- S. Franco, I. García-Etxebarria, A.U, hep-th/0607218

Why D-branes at singularities?

 Chirality: Natural setup to construct (MS)SM gauge sectors in string theory

[Aldazabal, Ibáñez, Quevedo, A.U; Berenstein, Jejjala, Leigh; Verlinde, Wijnholt]

- IR Dynamics: Gauge sectors with interesting IR dynamics Motivated by gauge/gravity correspondence
- → Confining gauge theories holographically dual to warped throats with fluxes [Vafa; Klebanov, Strassler; Franco, Hanany, A.U.]
- → Dynamical supersymmetry breaking gauge theories from singularities with obstructed deformations

[Berenstein, Herzog, Ouyang, Pinansky; Franco, Hanany, Saad, A.U; Bertolini, Bigazzi, Cotrone]

- Possible model building applications of these ideas
- In this talk, emphasis on supersymmetry breaking dynamics

D3-branes at singularities

- \bullet D3-branes at singular CY lead to intricate N=1 gauge theories, nicely encoded in dimer diagrams
- → Periodic tiling of the plane, with faces giving gauge factors, edges giving chiral bi-fundamentals, and nodes giving superpotential couplings [Hanany, Kennaway; Franco, Hanany, Kennaway, Vegh, Wecht]

- Dimer techniques allow to obtain the gauge theory on D3-branes at any toric singularity
- Fractional branes: Anomaly free assignments of ranks on gauge factors (faces) → Non-conformal theories

Examples of toric, web, quiver and dimer diagrams

D-branes at singularities as holographic duals of warped throats

- D3-branes at singularity \mathbf{X}_6 correspond to 4d conformal field theories \rightarrow Holographically dual to IIB theory on $\mathsf{AdS}_5 \times \mathbf{Y}_5$ with \mathbf{Y}_5 the base of the real cone \mathbf{X}_6 .
- Addition of fractional branes breaks conformal invariance
- The case of the conifold

Conformal case: The gauge theory SU(N) imes SU(N) [Klebanov,Witten] $W = {\rm tr} \left(A_1 B_1 A_2 B_2 - A_1 B_2 A_2 B_1 \right)$

 \rightarrow Dual to $AdS_5 \times T^{11}$.

 Addition of fractional branes (change of ranks consistent with anomaly cancellation) breaks conformal invariance

The gauge theory
$$SU(N) \times SU(N+M)$$

-It suffers a cascade of Seiberg dualities as it runs to the IR

$$SU(N) \times SU(N+M) \rightarrow SU(N) \times SU(N-M) \rightarrow SU(N-2M) \times SU(N-M) \rightarrow \cdots$$

- For N = KM, this proceeds for K steps, the left over IR theory is pure SU(M), confines and develops a gaugino condensate.

• IIB dual is the KS solution: Warped deformed conifold $xy-zw=\epsilon$ with M units of RR 3-form flux on ${\bf S}^3$ and K units of NSNS 3-form flux on dual 3-cycle.

- NSNS flux → RG varying couplings
- RR flux → dual to D5-branes
- Varying F_5 \rightarrow Duality cascade
- ${\bf S}^3$ size $e^{-{K\over Mg_s}}$ ightarrow Strong dynamics scale
- A particular case of CY with 3-form fluxes:

[Beckers; Dasgupta, Rajesh, Sethi; Giddings, Kachru, Polchinski] Flux is ISD and in fact (2,1) and stabilizes size of ${\bf S}^3$

Lesson: Confinement

→ Complex deformation
 Moduli space of gauge theory with fractional branes is the complex deformed geometry

Complex deformations

- Complex deformations are easily identified in web diagram as recombinations of external legs into subwebs
- → Higgs branch of 5d theory [Seiberg, Morrison; Aharony, Hanany, Kol]
- → Decomposition of toric polygon as Minkowski sum [Altmann]
- Familiar example: Conifold

But other examples too! Ex: SPP

• Also cases with no deformation: $Y^{p,q}$

One to one map with gauge theory behaviour!

IR confinement vs. deformation: The SPP example

- Systematic study of duality cascades, etc, possible. Today, center on IR behaviour, e.g. for the SPP case.
- IR behaviour of fractional branes is a confining theory, reminiscent of the conifold. Suggests a matching with the complex deformation to a smooth geometry $xy-zw^2=\epsilon w$.

• To verify, add D3-brane probe: Moduli space of the gauge theory should be that of a D-brane moving in a smoothed space

Gauge theory check: Moduli space is deformed geometry

• Lenghty gauge theory computation [Franco, Hanay, A.U.] simple in terms of dimer diagram [García-Etxebarria, Saad, A.U.]

• After confinement, gauge theory is N=4 SYM: D-brane on smoothed out geometry!

The cone over dP_3

The geometry has a two-dimensional branch of complex deformations

- In the regime of hierarchically different sizes, sequential deformation: cone over $dP_3 \rightarrow conifold \rightarrow smooth$
- Suggests two stages of infrared partial confinement
- Full agreement with gauge theory pattern:
 Duality cascade → Partial confinement. to conifold th. →
- → Subsequent cascade → Confinement

Gauge dynamics of the probe using the dimer diagram

[García-Etxebarria, Saad, A.U.]

Cases with no deformation: DSB branes

- ullet Many geometries do not admit complex deformations For instance, $Y_{p,q}$
- But UV cascades, and dual throats, exist (albeit IR singular).
 [Herzog, Ejaz, Klebanov] → What is the IR behaviour?
- Analyze using gauge theory! [Berenstein, Herzog, Ouyang, Pinansky; Franco, Hanany, Saad, A.U; Bertolini, Bigazzi, Cotrone] e.g. for dP_1 theory

- We have $U(3M) \times U(2M) \times U(1)$ with $W = X_{23}X_{31}Y_{12} X_{23}Y_{31}X_{12}$
- The U(1)'s have Green-Schwarz anomaly cancellation and disappear; their FI terms are dynamical vevs of closed Kahler moduli.
- \rightarrow Effectively neither U(1) vector multiplet, nor D-term constraint.

DSB branes: No SUSY vacuum

• In the regime where the SU(3M) dominates, we have an Affleck-Dine-Seiberg superpotential $M_{21}=X_{23}X_{31},\ M'_{21}=X_{23}Y_{31}$

$$W = (M_{21}Y_{12} - M'_{21}X_{12}) + M\left(\frac{\Lambda_3^{7M}}{\det \mathcal{M}}\right)^{\frac{1}{M}}$$
; $\mathcal{M} = (M_{21}; M'_{21})$

No SUSY vacuum

 $F_{X_{12}}, F_{Y_{12}}$ send $M_{21}, M'_{21} \to 0$, and then $F_{M_{21}}, F_{M'_{21}}$ send $X_{12}, Y_{12} \to \infty$. [Berenstein, Herzog, Ouyang, Pinansky; Franco, Hanany, Saad, A.U; Bertolini, Bigazzi, Cotrone]

- Assuming canonical Kahler potential, scalar potential has runaway behaviour [Franco, Hanany, Saad, A.U; Intriligator, Seiberg]
- Runaway can be stopped if e.g. Kahler moduli are fixed, so FI terms are effectively no longer dynamical, and U(1) D-terms reappear.
- All similar to SU(5) with $10 + \overline{5}$ in [Lykken, Poppitz, Trivedi]

Stopping the runaway:

- → Embedding in compact space, and include instantons to stabilize Kahler moduli (FI terms) [McGreevy, Strings06]
- → Remain local, and modify to get local meta-stable minima, following [Intriligator, Seiberg, Shih]

The ISS model [Intriligator, Seiberg, Shih]

- Consider $SU(N_c)$ SYM with N_f massive flavors, $(m \ll \Lambda_{SQCD})$ in free magnetic phase $(N_c + 1 \leq N_f \leq \frac{3}{2}N_c)$,
- → Seiberg dual has canonical Kahler potential.
- Dual is SU(N) SYM with $N=N_f-N_c$, with N_f flavors q, \tilde{q} , and mesons Φ , with $W=h{\rm Tr}\, q\Phi \tilde{q}-h\mu^2{\rm Tr}\, \Phi$
- \rightarrow SUSY breaking at tree level: $F_{\Phi} = \tilde{q}^i q_j \mu^2 \delta^i_j \neq 0$
- Classical moduli space with $V_{min} = (N_f N)|h^2\mu^4|$

$$\Phi = \begin{pmatrix} 0 & 0 \\ 0 & \Phi_0 \end{pmatrix} \; ; \; q = \begin{pmatrix} \varphi_0 \\ 0 \end{pmatrix} \; ; \; \tilde{q}^T = \begin{pmatrix} \tilde{\varphi}_0 \\ 0 \end{pmatrix}, \; \; \text{with} \; \; \tilde{\varphi}_0 \varphi_0 = \mu^2 \mathbf{1}_N$$

One-loop Coleman-Weinberg potential leads to a minimum at

$$\Phi_0 = 0, \qquad \varphi_0 = \tilde{\varphi}_0 = \mu \mathbf{1}_N$$

• Include the SU(N) gauge interactions

For generic Φ , flavors q, \tilde{q} are integrated out, leaving SU(N) SYM with scale Λ'

$$\Lambda^{\prime 3N} = h^{N_f} \det \Phi \Lambda^{-(N_f - 3N)}$$

with Λ the Landau pole scale of the IR free theory.

→ Complete superpotential

$$W = N \left(h^{N_f} \Lambda^{-(N_f - 3N)} \det \Phi \right)^{1/N} - h\mu^2 \operatorname{Tr} \Phi$$

 \rightarrow There are $N_f - N$ supersymmetric minima

$$\langle h\Phi_0
angle = \mu\epsilon^{-rac{N_f-3N}{N_f-N}} \mathbf{1}_{N_f}$$
 where $\epsilon\equivrac{\mu}{\Lambda}$

ullet For $\epsilon \ll 1$, local SUSY breaking minimum is parametrically long-lived

$$S \simeq \left|\epsilon
ight|^{-rac{4\left(N_f-3N
ight)}{N_f-N}} \gg 1$$

ISS in String Theory (I)

[Ooguri, Ookouchi; Franco, Garcia-Etxebarria, A.U.]

ullet Realize N=1 SYM with flavors by adding D7-branes to the conifold with fractional branes

• T-dualize to obtain system of NS-, D4- and D6-branes [Hanany, Witten; Elitzur, Giveon, Kutasov]

- → Classical properties are geometrized
- → 1-loop stabilization is non-BPS attraction

Generalizing ISS with extra massless flavours [Franco, A.U.]

- SQCD Consider $SU(N_c)$ with $N_{f,0}$ massless and $N_{f,1}$ massive flavours To have rank SUSY breaking in dual theory, need $N_{f,1} > N$ i.e. $N_{f,1} > N_{f,1} + N_{f,0} N_c \rightarrow N_{f,0} < N_c$ Repeat ISS-like analysis:
- Almost local minimum: $\Phi_{00} (= \tilde{Q}_0 Q_0)$ remains flat at one loop
- At large fields, Φ_{00} is a runaway direction (as without ISS flavours)
- → Suggests no local minimum, but saddle point and runaway
- SSQCD Add field Σ_0 , with $W = Q_0 \Sigma_0 \tilde{Q}_0$ to render Φ_{00} massive Repeat ISS-like analysis;
- → Local minimum for all fields!
- \rightarrow At large fields, Σ_0 is a runaway direction (as without ISS flavours)

ullet The condition $N_{f,0} < N_c$, and the cubic coupling to Σ_0 are present in gauge theories of D-branes at obstructed geometries

Flavoured dP_1 [Franco, A.U.]

ullet Add massive flavours to the theory of fractional branes at dP_1

$$W = \lambda \left(X_{23} X_{31} Y_{12} - X_{23} Y_{31} X_{12} \right)$$

$$W_{flav.} = \lambda' \left(Q_{3i} \tilde{Q}_{i2} X_{23} + Q_{2j} \tilde{Q}_{j1} X_{12} + Q_{1k} \tilde{Q}_{k3} X_{31} \right)$$

$$W_m = m_3 Q_{3i} \tilde{Q}_{k3} \delta_{ik} + m_2 Q_{2j} \tilde{Q}_{i2} \delta_{ji} + m_1 Q_{1k} \tilde{Q}_{j1} \delta_{kj}$$

• For SU(3M), $N_{f,0} < N_c$, hence the dual is IR free

$$W = h \Phi_{ki} \tilde{Q}_{i3} Q_{3k} - h \mu^{2} \text{tr} \Phi + h \mu_{0} \left(M_{21} Y_{12} - M'_{21} X_{12} \right) + h \left(M_{21} X_{13} X_{32} + M'_{21} Y_{13} X_{32} + N'_{k1} Y_{13} Q_{3k} \right) + \lambda' Q_{2j} \tilde{Q}_{j1} X_{12} - h_{1} \tilde{Q}_{k1} X_{13} Q_{3k} - h_{2} Q_{2i} \tilde{Q}_{i3} X_{32}$$

- Repeating ISS-like analysis: One-loop potential for classical moduli
- → Local minimum separated by a large barrier from runaway at infinity

String theory realization

- Consider D3-branes at a singularity, and add D7-branes passing through it
- → D7-branes wrap non-compact supersymmetric 4-cycles in toric singu
- → Flavours arise from D3-D7 open strings
- → Flavour masses from D7-D7' field vevs (due to 73-37-77' couplings): D7-branes recombine and move away from D3-branes
- Dimer diagrams efficiently describe these properties for general toric singularities (and dP_1 in particular). [Franco, A.U.]
- Geometric picture

Local models of GMSB [García-Etxebarria, Saad, A.U.]

- Consider local CY's with two singular points, with D-branes
- → Two chiral gauge sectors decoupled at massless level
- For suitable singularities, and D-brane systems at them,
- ightarrow MSSM-like sector e.g. D3/D7's at ${f C}^3/{f Z}_3$ [Aldazabal, Ibáñez, Quevedo, A.U.]
- \rightarrow Gauge sector with DSB e.g. D3/D7's at dP_1 singularity

- Models of Gauge mediation in string theory
- → Similar in spirit to [Diaconescu, Florea, Kachru, Svrcek]
- → Local model, enough for substringy separation: UV insensitivity
- → Separation related to Kahler or complex modulus
- → Spectrum and interactions of massive messengers is computable

A simple example

- For sub-stringy separtion, better described as small blow-up of gauge theory of D-branes at the singularity in the coincident limit
- A simple example: Partial resolution of $X^{3,1}$ singu to $C^3/{\bf Z}_3$ and dP_1

General framework, flexible enough to implement many other models

Conclusions

- D-branes at singularities can be used to engineer gauge theories with interesting infrared dynamics
- Complex deformations and IR confinement
- Absence of complex deformations and SUSY breaking
- Aspects of SUSY breaking from D-branes at singularities Important role of fractional D-branes at obstructed geometries (DSB branes), like dP_1 theory
- → Runaway for systems of just D3-branes
- → Local SUSY-breaking minimum for D3/D7's
- Many applications come to mind
- → String models of GMSB
- → Supergravity dual of DSB gauge theories (subtle...)
- → DSB systems as source of tension in KKLT
- Need to improve techniques to carry out gauge theory analysis
- → Insight from dimer diagrams?
- We expect interesting progress in these directions