Brane Inflation: Observational Signatures and Non-Gaussianities

Gary Shiu
University of Wisconsin

Collaborators

- Reheating in D-brane inflation:
 D.Chialva, GS, B. Underwood
- Non-Gaussianities in CMB:
 X.Chen, M. Huang, S. Kachru, GS
- DBI Inflation in Warped Throats:
 S.Kecskemeti, J.Maiden, GS, B.Underwood

Two popular themes in String Phenomenology:

Construct realistic particle physics models:

Not enough (realistic) vacua

Landscape (statistics, wave function, swampland, ...):

Too many vacua.

String theory: great scenario generator!

SUSY, brane world, ...

... in the year 1BC

... in the year 1B

... in the year 1BLHC

WMAP3

Strong and growing evidence for inflation

Goals and Motivation

- © Construct & study well motivated inflationary scenarios (incorporate SM, reheating, ...)
- Look for distinctive observational signatures
- Building realistic models

Many interesting possibilities with branes and fluxes

Brane Inflation

Dvali and Tye

Animation by A. Miller

 $D\overline{D}$ Inflation

[Burgess, Majumdar, Nolte, Quevedo, Rajesh, Zhang]; [Dvali, Shafi, Solganik], [Kachru, Kallosh, Linde, Maldacena, McAllister, Trivedi] and many others.

Brane Inflation

- Is this scenario viable/robust?e.g., number of e-folds, reheating, ...
- Observational signatures/constraints?
 e.g., cosmic strings (Tye's talk), non-Gaussianities, ...
- Model building?
 constraints on compactification geometry?

Warped Throats

Hierarchies from fluxes

Giddings, Kachru, Polchinski

• • •

$$S^3$$
 size $e^{-\frac{K}{Mg_s}}$

Strong dynamics scale

e.g., Klebanov, Strassler

"warped deformed conifold"

Warped Reheating

Reheating by DD annihilation

Shiu, Tye, Wasserman

Barnaby, Burgess, Cline Kofman and Yi Chialva, Shiu, Underwood Frey, Mazumdar, Myers Chen and Tye Langfelder

• • •

- Accommodate different hierarchies.
- Cosmic strings spatially separated from SM branes: not susceptible to breakage.
- Reheating via tunneling is efficient, can avoid overproduction of gravitational waves.

A Cartoon of Reheating

Warped Reheating

c.f. Dimopoulos, Kachru, Kaloper, Lawrence, Silverstein

- Production rate, interaction cross sections among KK modes enhanced relative to gravitons.
- For moderate warping of inflationary throat, KK preferably tunnel rather than decay to gravitons.

Is brane inflation robust?

Helps flatten the potential

Casual speed limit

Silverstein, Tong; Alishahiha, Silverstein, Tong

• Derivative terms sum to a DBI action:

$$S = -\int d^4x \ a^3(t) \left[T(\phi) \sqrt{1 - \dot{\phi}^2 / T(\phi)} + V(\phi) - T(\phi) \right]$$
$$T(\phi) = T_3 h^4(\phi)$$

• Casual speed limit: $\dot{\phi}^2 \leq T(\phi)$ warp factor

Relativistic even when ϕ is small.

Slow-roll + DBI : inflation is robust
 Shandera & Tye

Non-Gaussianities

Non-Gaussianities

- Power spectrum: $\langle \zeta_{\mathbf{k}_1} \zeta_{\mathbf{k}_2} \rangle \sim \delta^3(\mathbf{k}_1 + \mathbf{k}_2) \frac{P_k^{\zeta}}{k_1^3}$
- Bi-spectrum contain much richer info:

$$\langle \zeta_{\mathbf{k}_1} \zeta_{\mathbf{k}_2} \zeta_{\mathbf{k}_3} \rangle = (2\pi)^3 \delta^3(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) F(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3)$$

size $\sim f_{NL}$ and shape.

• Slow-roll: full functional form derived in Maldacena 02
Acquaviva et al 02

$$f_{NL} \sim \mathcal{O}(\epsilon)$$

 \bullet DBI inflation for $\gamma>>1$: Alishahiha, Silverstein, Tong Chen $f_{NL}\sim 0.32\gamma^2$ Chen, Huang, Kachru, GS

Non-Gaussianities

For a general single field Lagrangian:

$$\mathcal{L}(\phi, X)$$
 where $X = \frac{1}{2}g_{\mu\nu}\partial^{\mu}\phi\partial^{\nu}\phi$

• Bi-spectrum depends on 5 parameters: [Chen, Huang, Kachru, GS]

$$c_s^2 = \frac{\mathcal{L}_{,X}}{\mathcal{L}_{,X} + 2X\mathcal{L}_{,XX}} \equiv \frac{1}{\gamma^2} \text{ for DBI } \lambda/\Sigma = \frac{X^2\mathcal{L}_{,XX} + \frac{2}{3}X^3\mathcal{L}_{,XXX}}{X\mathcal{L}_{,X} + 2X^2\mathcal{L}_{,XX}}$$

and slow variation parameters:

$$\epsilon = -\frac{\dot{H}}{H^2}$$

$$\eta = \frac{\dot{\epsilon}}{\epsilon H},$$

$$s = \frac{\dot{c}_s}{c_s H}.$$

Shape of Non-Gaussianities

$$F(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) = (2\pi)^4 (P_k^{\zeta})^2 \frac{1}{\prod_i k_i^3} \times (\mathcal{A}_{\lambda} + \mathcal{A}_c + \mathcal{A}_{\epsilon} + \mathcal{A}_{\eta} + \mathcal{A}_s)$$

where
$$\mathcal{A}_{\lambda} \ = \ \left(\frac{1}{c_{s}^{2}} - 1 - \frac{2\lambda}{\Sigma}\right) \frac{3k_{1}^{2}k_{2}^{2}k_{3}^{2}}{2K^{3}} \ ,$$

$$\mathcal{A}_{c} \ = \ \left(\frac{1}{c_{s}^{2}} - 1\right) \left(-\frac{1}{K}\sum_{i>j}k_{i}^{2}k_{j}^{2} + \frac{1}{2K^{2}}\sum_{i\neq j}k_{i}^{2}k_{j}^{3} + \frac{1}{8}\sum_{i}k_{i}^{3}\right) \ ,$$

$$\mathcal{A}_{\epsilon} \ = \ \frac{\epsilon}{c_{s}^{2}} \left(-\frac{1}{8}\sum_{i}k_{i}^{3} + \frac{1}{8}\sum_{i\neq j}k_{i}k_{j}^{2} + \frac{1}{K}\sum_{i>j}k_{i}^{2}k_{j}^{2}\right) \ ,$$

$$\mathcal{A}_{\eta} \ = \ \frac{\eta}{c_{s}^{2}} \left(\frac{1}{8}\sum_{i}k_{i}^{3}\right) \ ,$$

$$\mathcal{A}_{s} \ = \ \frac{s}{c_{s}^{2}} \left(-\frac{1}{4}\sum_{i}k_{i}^{3} - \frac{1}{K}\sum_{i>j}k_{i}^{2}k_{j}^{2} + \frac{1}{2K^{2}}\sum_{i\neq j}k_{i}^{2}k_{j}^{3}\right) \ .$$

and
$$K = k_1 + k_2 + k_3$$
, $\Sigma = XP_{,X} + 2X^2P_{,XX}$, $\lambda = X^2P_{,XX} + \frac{2}{3}X^3P_{,XXX}$.

Correction Terms

Solution to the quadratic part of the action:

$$u_k(y) \rightarrow -\frac{\sqrt{\pi}}{2\sqrt{2}} \, \frac{H}{\sqrt{\epsilon c_s}} \, \frac{1}{k^{3/2}} (1 + \frac{\epsilon}{2} + \frac{s}{2}) \, e^{i\frac{\pi}{2}(\epsilon + \frac{\eta}{2})} \, y^{3/2} H_{\frac{3}{2} + \epsilon + \frac{\eta}{2} + \frac{s}{2}}^{(1)} ((1 + \epsilon + s)y)$$
 where $y \equiv \frac{c_s k}{aH}$

ullet Slowly-varying parameters H, c_s , λ and ϵ

$$f(\tau) \approx f(\tau_K)$$

 $\rightarrow f(\tau_K) - \frac{\partial f}{\partial t} \frac{1}{H_K} \ln \frac{\tau}{\tau_K} + \mathcal{O}(\epsilon^2 f)$

The scale factor

$$a \approx -\frac{1}{H_K \tau}$$

$$\rightarrow -\frac{1}{H_K \tau} - \frac{\epsilon}{H_K \tau} + \frac{\epsilon}{H_K \tau} \ln(\tau/\tau_K) + \mathcal{O}(\epsilon^2)$$

Final Results

$$F(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}) = (2\pi)^{4} (\tilde{P}_{K}^{\zeta})^{2} \frac{1}{\prod_{i} k_{i}^{3}} \times (\mathcal{A}_{\lambda} + \mathcal{A}_{c} + \mathcal{A}_{o} + \mathcal{A}_{\epsilon} + \mathcal{A}_{\eta} + \mathcal{A}_{s})$$

$$\mathcal{A}_{\lambda} = \left(\frac{1}{c_{s}^{2}} - 1 - \frac{\lambda}{\Sigma} [2 - (3 - 2c_{1})l]\right)_{K} \frac{3k_{1}^{2}k_{2}^{2}k_{3}^{2}}{2K^{3}},$$

$$\mathcal{A}_{c} = \left(\frac{1}{c_{s}^{2}} - 1\right)_{K} \left(-\frac{1}{K} \sum_{i>j} k_{i}^{2}k_{j}^{2} + \frac{1}{2K^{2}} \sum_{i\neq j} k_{i}^{2}k_{j}^{3} + \frac{1}{8} \sum_{i} k_{i}^{3}\right),$$

$$\mathcal{A}_{o} = \left(\frac{1}{c_{s}^{2}} - 1 - \frac{2\lambda}{\Sigma}\right)_{K} (\epsilon F_{\lambda \epsilon} + \eta F_{\lambda \eta} + s F_{\lambda s})$$

$$+ \left(\frac{1}{c_{s}^{2}} - 1\right)_{K} (\epsilon F_{c\epsilon} + \eta F_{c\eta} + s F_{cs}),$$

$$\mathcal{A}_{\epsilon} = \epsilon \left(-\frac{1}{8} \sum_{i} k_{i}^{3} + \frac{1}{8} \sum_{i\neq j} k_{i}k_{j}^{2} + \frac{1}{K} \sum_{i>j} k_{i}^{2}k_{j}^{2}\right),$$

$$\mathcal{A}_{\eta} = \eta \left(\frac{1}{8} \sum_{i} k_{i}^{3}\right),$$

$$\mathcal{A}_{s} = s F_{s}.$$

Experimental Bound

WMAP ansatz for the primordial non-Gaussianities

$$\zeta(x) = \zeta_g(x) - \frac{3}{5} f_{NL} (\zeta_g(x)^2 - \langle \zeta_g^2(x) \rangle$$

here $\zeta_g(x)$ is purely Gaussian with vanishing three point functions.

ullet The size of non-Gaussianities is measured by the parameter f_{NL} in the above ansatz. Current experimental bound (from WMAP3) is

$$-54 < f_{NL} < 114$$
 at 95% C.L.

Future experiments can eventually reach the sensitivity of $f_{NL}\lesssim 20$ (WMAP) and $f_{NL}\lesssim 5$ (PLANCK).

• However, the experimental bound depends on the shape of $F(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3)$.

Creminelli, Nicolis, Senatore, Tegmark, and Zaldarriaga

ullet Due to the symmetry and scaling property of $F(\mathbf{k}_1,\mathbf{k}_2,\mathbf{k}_3)$, all info about the shape can be viewed by plotting [Babich, Creminelli, Zaldarriaga]

$$F(1, k_2, k_3)k_2^2k_3^2$$

• For the WMAP ansatz:

$$F(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) \sim f_{NL} \left(P_k^{\zeta}\right)^2 \frac{k_1^3 + k_2^3 + k_3^3}{k_1^3 k_2^3 k_3^3}$$

Slow Roll Shapes

The relevant shapes are $F(k_1, k_2, k_3) \sim \frac{1}{\prod_i k_i^3} \mathcal{A}(k_1, k_2, k_3)$ where

$$\mathcal{A}_{\epsilon} = \frac{\epsilon}{c_s^2} \left(-\frac{1}{8} \sum_{i} k_i^3 + \frac{1}{8} \sum_{i \neq j} k_i k_j^2 + \frac{1}{K} \sum_{i > j} k_i^2 k_j^2 \right) ,$$

$$\mathcal{A}_{\eta} = \frac{\eta}{c_s^2} \left(\frac{1}{8} \sum_i k_i^3 \right)$$

$$A_s = \frac{s}{c_s^2} \left(-\frac{1}{4} \sum_i k_i^3 - \frac{1}{K} \sum_{i>j} k_i^2 k_j^2 + \frac{1}{2K^2} \sum_{i\neq j} k_i^2 k_j^3 \right) .$$

Consistency Condition

Maldacena

• In the "squeeze triangle limit": one momentum mode is much smaller than the other two:

$$k_3 \ll k_1, k_2$$
 $\mathbf{k}_1 \sim -\mathbf{k}_2$

- During inflation, the comoving Hubble scale decreases with time. The long wavelength mode k_3 crosses the horizon much earlier than the other two modes k_1, k_2 .
- ullet After horizon crossing, the long wavelength mode k_3 acts as background whose effect is to introduce a time variation at which $k_{1,2}$ cross the horizon.

$$\langle \zeta_{\mathbf{k}_1} \zeta_{\mathbf{k}_2} \zeta_{\mathbf{k}_3} \rangle \sim \langle \zeta_{\mathbf{k}_3} \zeta_{-\mathbf{k}_3} \rangle \frac{d}{d \ln k_1} \langle \zeta_{\mathbf{k}_1} \zeta_{\mathbf{k}_2} \rangle \sim (n_s - 1) \frac{1}{k_1^3} \frac{1}{k_3^3}$$

DBI Shape

Non-Gaussianities are generically quite large

$$f_{NL} \sim \frac{1}{c_s^2} \sim \gamma^2$$

• The shape of non-Gaussianities vanishes in the squeeze triangle limit $k_3 \ll k_1, k_2$, as required by Maldacena's consistency relation:

$$F(k_1, k_2, k_3)k_1^3k_3^3 \sim n_s - 1$$

This contradicts that the non-Gaussianities are large, unless the shape vanishes in the squeeze limit.

• The shape of non-Gaussianities for DBI inflation

- Peak at the equilateral triangle limit and vanishes in the squeeze limit.
- If non-Gaussianities of this shape is measured, gives interesting constraint on $m^2\phi^2$ term and in turn 4-cycles of CY.

[Baumann, Dymarsky, Klebanov, Maldacena, McAllister, and Murugan]

Also: [Berg, Haack, Kors]

More Shapes

Not realized in D-brane inflation. Similar to the DBI inflation but with an opposite sign.

$$A_{\lambda} = \left(\frac{1}{c_s^2} - 1 - \frac{2\lambda}{\Sigma}\right) \frac{3k_1^2k_2^2k_3^2}{2(k_1 + k_2 + k_3)^3}$$

Confronting Pata

$$\frac{\ddot{a}}{a} = H^2(1 - \epsilon_D)$$

$$\epsilon_D \equiv rac{2M_p^2}{\gamma} \left(rac{H'(\phi)}{H(\phi)}
ight)^2 \qquad \qquad r = rac{16\epsilon_D}{\gamma} \ \eta_D \equiv rac{2M_p^2}{\gamma} \left(rac{H''(\phi)}{H(\phi)}
ight) \qquad \qquad f_{NL} \leq 0.3\gamma^2 \ \kappa_D \equiv rac{2M_p^2}{\gamma} \left(rac{H'}{H}rac{\gamma'}{\gamma}
ight)$$

$$n_s - 1 \sim (1 + \epsilon_D + \kappa_D)(-4\epsilon_D + 2\eta_D - 2\kappa_D)$$

If r saturates the observational bound, non-Gaussianity is small.

Warped Deformed Conifold

$$\sum_{i=1}^{4} z_i^2 = \varepsilon^2$$

$$ds_{10}^2 = h^{-1/2}(\tau)dx_n dx_n + h^{1/2}(\tau)ds_6^2$$

$$ds_6^2 = \frac{1}{2} \varepsilon^{4/3} K(\tau) \left[\frac{1}{3K^3(\tau)} (d\tau^2 + (g^5)^2) + \cosh^2\left(\frac{\tau}{2}\right) [(g^3)^2 + (g^4)^2] \right] \qquad h(\tau) = \alpha \frac{2^{2/3}}{4} I(\tau) = (g_s M \alpha')^2 2^{2/3} \varepsilon^{-8/3} I(\tau) ,$$

$$+ \sinh^2\left(\frac{\tau}{2}\right) [(g^1)^2 + (g^2)^2] , \qquad I(\tau) \equiv \int_{\tau}^{\infty} dx \frac{x \coth x - 1}{\sinh^2 x} (\sinh(2x) - 2x)^{1/3} .$$

where

$$K(\tau) = \frac{(\sinh(2\tau) - 2\tau)^{1/3}}{2^{1/3}\sinh\tau} \ .$$

DBI ultra-relativistic region

$$f_{NL} \simeq \left(\frac{m}{M_p}\right)^2 \left(\frac{M_p}{m_s h_A}\right)^4 \simeq 10^{-12} \frac{1}{(G\mu_s)^2}$$
 $\frac{m_s}{M_p} > 10^{-2}$
 $N_A \sim 10^{14}$
 $\frac{m}{M_p} \simeq 10^{-6}$
 $h_A \sim 10^{-1} - 10^{-2}$

To fit a KS-like throat inside the bulk:

$$\frac{m_s}{M_p} \sim 10^{-12}$$

M. Alishahiha, E. Silverstein and D. Tong, hep-th/0404084 S. Kecskemeti, J. Maiden, G. Shiu, B. Underwood, hep-th/0605189

Need a long narrow throat:

- other warped throats?
- - Z_p orbifold the KS-like throat?

Red or blue tilt in DBI?

$$h^4(\phi) \simeq \frac{(\phi^2 + b)^2}{\lambda}$$

Red tilt

$$h^4(\phi) \simeq rac{\phi^4}{\lambda}$$
 cut off at ϕ_A

A small blue tilt

KS throat?

Red or blue tilt in DBI?

$$n_s - 1 = \frac{2M_p^2}{\gamma} \left[-4\left(\frac{H'}{H}\right)^2 + 2\frac{H''}{H} + 2\frac{H'}{H} \left| \frac{\gamma'}{\gamma} \right| \right]$$

red

(small) blue

Tip from the Sky?

Bret Underwood

Red or blue tilt in DBI-KS?

$$n_s - 1 = \frac{2M_p^2}{\gamma} \left[-4\left(\frac{H'}{H}\right)^2 + 2\frac{H''}{H} + 2\frac{H'}{H} \left| \frac{\gamma'}{\gamma} \right| \right]$$

red

blue

For example, if
$$h_{tip} \geq 10^{-2}$$
 and $M_s \sim 10^{-2} M_P$

red tilt dominates for KS throat

Summary

- Brane inflation is robust: number of e-foldings, reheating, ...
- Interesting signatures: can lead to large tensorscalar ratio r, or large non-Gaussianities, cosmic strings ...
- Data probe warped geometry.

[c.f. talks of Giddings, Hebecker]

Large influx of data from Cosmology + LHC!