Identifying the Geometry of the MSSM

Brent D. Nelson
Northeastern University

with James Gray, Yang-Hui He \& Vishnu Jejjala
Physics Letters B638 (2006) 253 [hep-th/0511062]
Nuclear Physics B750 (2006) 1 [hep-th/0604208]

August 31, 2006

A Proposal for a New Approach

We propose to search for unexplained structure in the geometry of the vacuum spaces of supersymmetric theories
\Rightarrow Supersymmetric quantum field theories have scalars \rightarrow a complicated vacuum space of possible field vevs $\left\langle\phi_{i}\right\rangle$

- The vacuum manifold, or moduli space \mathcal{M}, generally characterized by certain flat directions
- Efforts in the past to understand how these flat directions are "lifted"
- This manifold \mathcal{M} may have special structure that correlates with certain phenomenological properties - but NOT related to gauge invariance or discrete symmetries

Procedure I: Determine the Vacuum Conditions

\Rightarrow So how does one determine the geometry of the vacuum space \mathcal{M} ?

- Consider a general $N=1$ supersymmetric system defined by

$$
S=\int \mathrm{d}^{4} x\left[\int \mathrm{~d}^{4} \theta \Phi_{i}^{\dagger} e^{V} \Phi_{i}+\left(\frac{1}{4 g^{2}} \int \mathrm{~d}^{2} \theta \operatorname{Tr} \mathcal{W}_{\alpha} \mathcal{W}^{\alpha}+\int \mathrm{d}^{2} \theta W(\Phi)+\text { h.c. }\right)\right]
$$

- The scalar potential can be found from the component form of the above

$$
V\left(\phi_{i}, \bar{\phi}_{i}\right)=\sum_{i}\left|\frac{\partial W}{\partial \phi_{i}}\right|^{2}+\frac{g^{2}}{4}\left(\sum_{i} q_{i}\left|\phi_{i}\right|^{2}\right)^{2}
$$

where ϕ_{i} is the lowest (scalar) component of superfield Φ_{i} with charge q_{i}

- Vacuum configuration is any set of field values $\left\{\phi_{i}^{0}\right\}$ such that $V\left(\phi_{i}^{0}, \bar{\phi}_{i}^{0}\right)=0$
\Rightarrow This implies the following relations:

$$
\frac{\partial W}{\partial \phi_{i}}=0 \quad \text { F-TERMS; } \quad \sum_{i} q_{i}\left|\phi_{i}\right|^{2}=0 \quad \text { D-TERMS }
$$

\Rightarrow The vacuum moduli space \mathcal{M} is the space of all possible solutions ϕ^{0} to these F and D -flatness conditions

Procedure II: Set up an Appropriate Basis

\Rightarrow To every solution of the F-flatness conditions there exists a solution to the D-flatness conditions in the orbit of the complexified gauge group \mathcal{G}^{C} :

$$
\mathcal{M}=\mathcal{F} / / \mathcal{G}^{C}
$$

where \mathcal{F} is the space of all F -flat field configurations

Procedure II: Set up an Appropriate Basis

\Rightarrow To every solution of the F-flatness conditions there exists a solution to the D-flatness conditions in the orbit of the complexified gauge group \mathcal{G}^{C} :

$$
\mathcal{M}=\mathcal{F} / / \mathcal{G}^{C}
$$

where \mathcal{F} is the space of all F -flat field configurations
\Rightarrow More practically speaking, the procedure involves the following:

1. Take a theory defined by a superpotential $W=W\left(\Phi_{1}, \Phi_{2}, \ldots, \Phi_{n}\right)$
2. Set up a basis of gauge invariant operators (GIOs) $D=\left\{D_{1}, D_{2}, \ldots, D_{k}\right\}$
3. Determine the n F-flatness conditions given by $\partial W / \partial \phi_{i}=0$
4. Find the set $\tilde{n} \leq n$ of independent relations defined in (3)
5. Use these to eliminate \tilde{n} fields in the GIOs

$$
D_{k}\left(\phi_{1}, \ldots, \phi_{n}\right) \rightarrow D_{k}\left(z_{i}, \ldots, z_{n}\right)
$$

Procedure III: Find \mathcal{M} as an Algebraic Variety

\Rightarrow The various D_{k} form the coordinates of \mathcal{M}

- These coordinates will NOT (in general) be independent
- Let $\operatorname{Eq}(\mathcal{M})$ be the set of all algebraic relations amongst these D_{k}
$\Rightarrow \mathrm{Eq}(\mathcal{M})$ defines \mathcal{M} as an algebraic variety
\Rightarrow To identify the manifold, we want to $\operatorname{know} \operatorname{Eq}(\mathcal{M})$; i.e. want to build the quotient ring explicitly
- The building of the quotient ring is a manifestation of the syzygy problem
- Huge subject in mathematics barely touched by physics
- A generalization of finding divisors for a given polynomial
- Macaulay 2 and Singular can solve this problem using a Groebner bases algorithm; already includes technology for performing ring maps

Attacking the MSSM

\Rightarrow Seven species of chiral superfields $\Rightarrow 49$ scalar fields ($n=49$)
\Rightarrow All 991 possible GIOs tabulated below $(k=991)$
T. Gherghetta, C. Kolda, S. Martin, Nucl. Phys., B468 (1996)

Operator	Explicit Sum	Index	Number
$L H_{u}$	$L_{i}^{\alpha} H^{\beta} \epsilon_{\alpha \beta}$	$i=1,2,3$	3
$H_{u} H_{d}$	$H_{\alpha}\left(H_{d}\right)_{\beta} \epsilon^{\alpha \beta}$	NA	1
$L L e$	$L_{\alpha}^{i} L_{\beta}^{j} e^{k} \epsilon^{\alpha \beta}$	$i, j=1,2,3 ; k=1, \ldots, j-1$	9
$L H_{d} e$	$L_{\alpha}^{i}\left(H_{d}\right)_{\beta} e^{j} \epsilon^{\alpha \beta}$	$i, j=1,2,3$	9
$u d d$	$u_{a}^{i} d_{b}^{j} d_{c}^{k} \epsilon^{a b c}$	$i, j=1,2,3 ; k=1, \ldots, j-1$	9
$Q d L$	$Q_{a, \alpha}^{i} d_{a}^{j} L_{\beta}^{k} \epsilon^{\alpha \beta}$	$i, j, k=1,2,3$	27
$Q u H_{u}$	$Q_{a, \alpha}^{i} u_{a}^{j}\left(H_{u}\right)_{\beta} \epsilon^{\alpha \beta}$	$i, j=1,2,3$	9
$Q d H_{d}$	$Q_{a, \alpha}^{i} d_{a}^{j}\left(H_{d}\right)_{\beta} \epsilon^{\alpha \beta}$	$i, j=1,2,3$	9
$Q Q Q L$	$Q_{a, \beta}^{i} Q_{b, \gamma}^{j} Q_{c, \alpha}^{k} L_{\delta}^{l} \epsilon^{a b c} \epsilon^{\beta \gamma} \epsilon^{\alpha \delta}$	$i, j, k, l=1,2,3 ; i \neq k, j \neq k$, $j<i,(i, j, k) \neq(3,2,1)$	24
$Q u Q d$	$Q_{a, \alpha}^{i} u_{a}^{j} Q_{b, \beta}^{k} d_{b}^{l} \epsilon^{\alpha \beta}$	$i, j, k, l=1,2,3$	81
$Q u L e$	$Q_{a, \alpha}^{i} u_{a}^{j} L_{\beta}^{k} e^{l} \epsilon^{\alpha \beta}$	$i, j, k, l=1,2,3$	81
$u u d e$	$u_{a}^{i} u_{b}^{j} d_{c}^{k} e^{l} \epsilon^{a b c}$	$i, j, k, l=1,2,3 ; j<i$	27
$Q Q Q H_{d}$	$Q_{a, \beta}^{i} Q_{b, \gamma}^{j} Q_{c, \alpha}^{k}\left(H_{d}\right)_{\delta} \epsilon^{a b c} \epsilon^{\beta \gamma} \epsilon^{\alpha \delta}$	$i, j, k, l=1,2,3 ; i \neq k, j \neq k$, $j<i,(i, j, k) \neq(3,2,1)$	8
$Q u H_{d} e$	$Q_{a, \alpha}^{i} u_{a}^{j}\left(H_{d}\right)_{\beta} e^{k} \epsilon^{\alpha \beta}$	$i, j, k=1,2,3$	27
$d d d L L$	$d_{a}^{i} d_{b}^{j} d_{c}^{k} L_{\alpha}^{m} L_{\beta}^{n} \epsilon^{a b c} \epsilon_{i j k} \epsilon^{\alpha \beta}$	$m, n=1,2,3 ; n<m$	3

$i, j, k=1,2,3 \leftrightarrow$ flavor indices, $\quad a, b, c=1,2,3 \leftrightarrow$ color indices, $\quad \alpha, \beta, \gamma=1,2 \leftrightarrow S U(2)_{L}$ indices

Attacking the MSSM

Operator	Explicit Sum	Index	Number
uиuee	$u_{a}^{i} u_{b}^{j} u_{c}^{k} e^{m} e^{n} \epsilon^{a b c} \epsilon_{i j k}$	$m, n=1,2,3 ; n \leq m$	6
QuQue	$Q_{a, \alpha}^{i} u_{a}^{j} Q_{b, \beta}^{k} u_{b}^{m} e^{n} \epsilon_{\alpha \beta}$	$\begin{aligned} & i, j, k, m, n=1,2,3 ; \\ & \operatorname{as}\{(i, j),(k, m)\} \end{aligned}$	108
$Q Q Q Q u$	$Q_{a, \beta}^{i} Q_{b, \gamma}^{j} Q_{c, \alpha}^{k} Q_{f, \delta}^{m} u_{f}^{n} \epsilon^{a b c} \epsilon^{\beta \gamma} \epsilon^{\alpha \delta}$	$\begin{aligned} & i, j, k, m=1,2,3 ; i \neq m, \\ & j \neq m, j<i, \\ & (i, j, k) \neq(3,2,1) \end{aligned}$	72
$d d d L H_{d}$	$d_{a}^{i} d_{b}^{j} d_{c}^{k} L_{\alpha}^{m}\left(H_{d}\right)_{\beta} \epsilon^{a b c} \epsilon_{i j k} \epsilon_{\alpha \beta}$	$m=1,2,3$	3
$u u d Q d H_{u}$	$u_{a}^{i} u_{b}^{j} d_{c}^{k} Q_{f, \alpha}^{m} d_{f}^{n}\left(H_{u}\right)_{\beta} \epsilon^{a b c} \epsilon_{\alpha \beta}$	$i, j, k, m=1,2,3 ; j<i$	81
$(Q Q Q)_{4} L L H_{u}$	$(Q Q Q)_{4}^{\alpha \beta \gamma} L_{\alpha}^{m} L_{\beta}^{n}\left(H_{u}\right)_{\gamma}$	$m, n=1,2,3 ; n \leq m$	6
$(Q Q Q)_{4} L H_{u} H_{d}$	$(Q Q Q)_{4}^{\alpha \beta \gamma} L_{\alpha}^{m}\left(H_{u}\right)_{\beta}\left(H_{d}\right)_{\gamma}$	$m=1,2,3$	3
$(Q Q Q)_{4} H_{u} H_{d} H_{d}$	$(Q Q Q)_{4}^{\alpha \beta \gamma}\left(H_{u}\right)_{\alpha}\left(H_{d}\right)_{\beta}\left(H_{d}\right)_{\gamma}$	NA	1
$(Q Q Q){ }_{4} L L L e$	$(Q Q Q)_{4}^{\alpha \beta \gamma} L_{\alpha}^{m} L_{\beta}^{n} L_{\gamma}^{p} e^{q}$	$\begin{aligned} & m, n, p, q=1,2,3 \\ & n \leq m ; p \leq n \end{aligned}$	27
uudQdQd	$u_{a}^{i} u_{b}^{j} d_{c}^{k} Q_{f, \alpha}^{m} d_{f}^{n} Q_{g, \beta}^{p} d_{g}^{q} \epsilon^{a b c} \epsilon_{\alpha \beta}$	$\begin{aligned} & i, j, k, m, n, p, q=1,2,3 ; \\ & j<i, \operatorname{as}\{(m, n),(p, q)\} \end{aligned}$	324
$(Q Q Q){ }_{4} L L H_{d} e$	$(Q Q Q)_{4}^{\alpha \beta \gamma} L_{\alpha}^{m} L_{\beta}^{n}\left(H_{d}\right){ }_{\gamma} e^{p}$	$m, n, p=1,2,3 ; n \leq m$	9
$(Q Q Q)_{4} L H_{d} H_{d} e$	$(Q Q Q)_{4}^{\alpha \beta \gamma} L_{\alpha}^{m}\left(H_{d}\right)_{\beta}\left(H_{d}\right)_{\gamma} e^{n}$	$m, n=1,2,3$	9
$(Q Q Q)_{4} H_{d} H_{d} H_{d} e$	$(Q Q Q)_{4}^{\alpha \beta \gamma}\left(H_{d}\right)_{\alpha}\left(H_{d}\right)_{\beta}\left(H_{d}\right)_{\gamma} e^{m}$	$m=1,2,3$	3

In the above we defined $\left[(Q Q Q)_{4}\right]_{\alpha \beta \gamma}=Q_{a, \alpha}^{i} Q_{b, \beta}^{j} Q_{c, \gamma}^{k} \epsilon^{a b c} \epsilon^{i j k}$
\Rightarrow The reason the problem has languished for a decade...

Attacking the MSSM

\Rightarrow Superpotential we would ultimately like to study is given by

$$
\begin{aligned}
W_{\mathrm{MSSM}}= & \lambda^{0} H_{u} H_{d}+\lambda_{i j}^{1} Q_{i} H_{u} u_{j}+\lambda_{i j}^{2} Q_{i} H_{d} d_{j}+\lambda_{i j}^{3} L_{i} H_{d} e_{j} \\
= & \lambda^{0} \sum_{\alpha, \beta} H_{u}^{\alpha} H_{d}^{\beta} \epsilon_{\alpha \beta}+\sum_{i, j} \lambda_{i j}^{1} \sum_{\alpha, \beta, a} Q_{a, \alpha}^{i}\left(H_{u}\right)_{\beta} u_{a}^{j} \epsilon_{\alpha \beta} \\
& +\sum_{i, j} \lambda_{i j}^{2} \sum_{\alpha, \beta, a} Q_{a, \alpha}^{i}\left(H_{d}\right)_{\beta} d_{a}^{j} \epsilon_{\alpha \beta}+\sum_{i, j} \lambda_{i j}^{3} \sum_{\alpha, \beta} L_{\alpha}^{i}\left(H_{d}\right)_{\beta} e^{j} \epsilon_{\alpha \beta}
\end{aligned}
$$

\Rightarrow The matrices $\lambda_{i j}$ are flavor mixing matrices

- In explicit computations they are randomly generated matrices
- Dimensionality of some coefficients suppressed (irrelevant for topology)

Attacking the MSSM

\Rightarrow Superpotential we would ultimately like to study is given by

$$
\begin{aligned}
W_{\mathrm{MSSM}}= & \lambda^{0} H_{u} H_{d}+\lambda_{i j}^{1} Q_{i} H_{u} u_{j}+\lambda_{i j}^{2} Q_{i} H_{d} d_{j}+\lambda_{i j}^{3} L_{i} H_{d} e_{j} \\
= & \lambda^{0} \sum_{\alpha, \beta} H_{u}^{\alpha} H_{d}^{\beta} \epsilon_{\alpha \beta}+\sum_{i, j} \lambda_{i j}^{1} \sum_{\alpha, \beta, a} Q_{a, \alpha}^{i}\left(H_{u}\right)_{\beta} u_{a}^{j} \epsilon_{\alpha \beta} \\
& +\sum_{i, j} \lambda_{i j}^{2} \sum_{\alpha, \beta, a} Q_{a, \alpha}^{i}\left(H_{d}\right)_{\beta} d_{a}^{j} \epsilon_{\alpha \beta}+\sum_{i, j} \lambda_{i j}^{3} \sum_{\alpha, \beta} L_{\alpha}^{i}\left(H_{d}\right)_{\beta} e^{j} \epsilon_{\alpha \beta}
\end{aligned}
$$

\Rightarrow The matrices $\lambda_{i j}$ are flavor mixing matrices

- In explicit computations they are randomly generated matrices
- Dimensionality of some coefficients suppressed (irrelevant for topology)
\Rightarrow Quotient space far too large and complicated for current methods
- Largest success thus far involved 25 GIOs
- Computational load scales rapidly with $\operatorname{dim}(\mathcal{M})$ for computing topological information

One Generation MSSM

\Rightarrow Drop all flavor indices ($i=j=k=1$) so now $n=7$
\Rightarrow There are now only 9 GIOs (one of each variety)

$$
L H_{u}, H_{u} H_{d}, Q d L, Q u H_{u}, Q d H_{d}, L H_{d} e, Q u Q d, Q u L e, Q u H_{d} e
$$

\Rightarrow Simplified superpotential

$$
\begin{aligned}
W_{0}= & \lambda^{0} \sum_{\alpha, \beta} H_{u}^{\alpha} H_{d}^{\beta} \epsilon_{\alpha \beta}+\lambda^{1} \sum_{\alpha, \beta, a} Q_{a, \alpha}\left(H_{u}\right)_{\beta} u_{a} \epsilon^{\alpha \beta} \\
& +\lambda^{2} \sum_{\alpha, \beta, a} Q_{a, \alpha}\left(H_{d}\right)_{\beta} d_{a} \epsilon^{\alpha \beta}+\lambda^{3} \sum_{\alpha, \beta} L_{\alpha}\left(H_{d}\right)_{\beta} \epsilon \epsilon^{\alpha \beta}
\end{aligned}
$$

\Rightarrow Computation of vacuum manifold \mathcal{M} for various deformations

$W_{0}+?$	$\operatorname{dim}(\mathcal{M})$	\mathcal{M}	$W_{0}+?$	$\operatorname{dim}(\mathcal{M})$	\mathcal{M}
0	1	\mathbb{C}	$Q u Q d$	1	\mathbb{C}
$L H_{u}$	0	point	$Q u L e$	1	\mathbb{C}
$Q d L$	0	point	$Q u H_{d} e$	1	\mathbb{C}

MSSM Electroweak Sector I

\Rightarrow Set vevs for $u_{L}^{i}, u_{R}^{i}, d_{L}^{i}, d_{R}^{i}$ to zero by hand
\Rightarrow This leaves $n=13$ scalar fields and $k=22 \mathrm{GIOs}$

Operator	Explicit Sum	Index	Number
$L H_{u}$	$L_{i}^{\alpha} H^{\beta} \epsilon_{\alpha \beta}$	$i=1,2,3$	3
$H_{u} H_{d}$	$H_{\alpha}\left(H_{d}\right)_{\beta} \epsilon^{\alpha \beta}$	NA	1
$L L e$	$L_{\alpha}^{i} L_{\beta}^{j} e^{k} \epsilon^{\alpha \beta}$	$i, j=1,2,3 ; k=1, \ldots, j-1$	9
$L H_{d} e$	$L_{\alpha}^{i}\left(H_{d}\right)_{\beta} \epsilon^{\alpha \beta} e^{j}$	$i, j=1,2,3$	9

$$
W_{0}=\lambda^{0} H_{u} H_{d}+\lambda_{i j}^{3} L_{i} H_{d} e_{j}=\lambda^{0} \sum_{\alpha, \beta} H_{u}^{\alpha} H_{d}^{\beta} \epsilon_{\alpha \beta}+\sum_{i, j} \lambda_{i j}^{3} \sum_{\alpha, \beta} L_{\alpha}^{i}\left(H_{d}\right)_{\beta} e^{j} \epsilon_{\alpha \beta}
$$

\Rightarrow Computation of vacuum manifold \mathcal{M} for various deformations

$W_{0}+?$	$\operatorname{dim}(\mathcal{M})$	\mathcal{M}	$W_{0}+?$	$\operatorname{dim}(\mathcal{M})$	\mathcal{M}
0	5	cone over $\left(\mathbb{C P}^{8}\|6\| 2^{6}\right)$	$L L e$	0	point
$L H_{u}$	1	\mathbb{C}	$L L e+L H_{u}$	0	point

\Rightarrow Affine cone over base manifold \mathcal{B} with $\operatorname{dim}(\mathcal{B})=4$ formed by non-complete intersection of six quadratics in $\mathbb{C P}^{8}$

MSSM Electroweak Sector II

\Rightarrow Next logical choice of deformation is dimension four terms which lift the Higgs directions:

$$
W_{1}=W_{0}+\lambda^{\prime}\left(H_{u}^{\alpha} H_{d}^{\beta} \epsilon_{\alpha \beta}\right)^{2}+\lambda_{i j}^{\prime \prime}\left(L^{i} H_{u}^{\alpha}\right)\left(L^{j} H_{d}^{\beta}\right) \epsilon_{\alpha \beta}
$$

- We find that $\operatorname{dim}(\mathcal{M})=3$....interesting!
- The manifold \mathcal{M} is an affine cone over a compact, two-dimensional base \mathcal{B}
- This base is the non-complete degree 4 intersection of 6 quadrics in $\mathbb{C P}^{5}$ as a projective variety
\Rightarrow Consider the simplest geometrical information about this surface, the Hodge diamond
\Rightarrow No explanation for the simplicity of this structure from field theory

MSSM Electroweak Sector III

- This manifold turns out to be one of the simplest you can imagine: the Veronese surface embedding $\mathbb{C P}^{2}$ in $\mathbb{C P}^{5}$

Giuseppe Veronese

The Veronese Surface

Interpretation...and Future Directions

\Rightarrow Ultimate goal: provide a guide-book of "target" geometries for top-down explicit string constructions

Interpretation...and Future Directions

\Rightarrow Ultimate goal: provide a guide-book of "target" geometries for top-down explicit string constructions
\Rightarrow Short-term goal: A new principle for low-energy phenomenology?

- Any special geometry of the vacuum moduli space \mathcal{M} should be regarded as fundamental
- Any deformation of the gauge theory should be restricted to those which enhance/preserve the features of \mathcal{M}
- Divide theories into "conjugacy classes" on the basis of their common geometrical structres
- Guide to bottom-up model building akin to "naturalness" or fine-tuning

