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Some History: Theory
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☞ 1759 Euler (“Euler equations”)

☞ 1822 Navier (“Navier-Stokes equations”)

☞ 1845 Stokes (friction of fluids in motion)

☞ 1895 Reynolds (“Reynolds decomposition”, “Reynolds equation”)

☞ 1922 Richardson (“Richardson cascade”)

☞ 1935 Taylor (isotropic turbulence)

☞ 1941 Kolmogorov (“K41 phenomenology” ⇒ 46 yrs since Reynolds)

☞ 1946 99% of papers on density fluctuations were published since this yr.

☞ 1958 Favre (density-weighted average)

☞ 1962 Kolmogorov (K62 refined similarity hypothesis)

. . .

☞ 2000 $1M bounty from Clay Mathematics Institute “to unlock the secrets
hidden in the Navier-Stokes equations”
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Spitzer: “Sculpting the South Pillar”, Carina Nebula
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.

. Credit: NASA/JPL-Caltech/SSC/Nathan Smith (University of Colorado)
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Some History: Astrophysics
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Kaplan & Pikelner (1970): “Unfortunately, the question of the nature of turbulence in a

magnetic field remains far from solved. ... we must stress that interstellar gas turbulence is

known not to have an isotropic or homogeneous nature. Therefore, we can draw no further

conclusions by comparing theoretical assumptions with observational data.”

Pouquet, Passot & Léorat (1991): “Although interstellar cloud turbulence certainly

includes magnetic fields, stellar energy sources, radiative cooling and gravitation,

nonlinear advection is a major common feature to take into account. Homogeneous

compressible turbulence has not been extensively studied, partly due to the fact that the

incompressible case remains unsolved.”

McKee & Ostriker (2007): “Unfortunately, for the case of strong compressibility and

moderate or strong magnetic fields, which generally applies within molecular clouds, there

is as yet no simple conceptual theory to characterize the energy transfer between scales

and to describe the spatial correlations in the velocity and the magnetic fields.”
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Turbulent structures: HD vs. MHD

6

Density slices from two simulations with resolution 10243 points

Zeus HD Zeus MHD

Structures are different due to suppression of K-H instability by B-fields
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Turbulent structures: HD vs. MHD
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Density power spectra for two snapshots with resolution 10243 points
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Density power spectra at 10243: HD vs. MHD

Zeus HD
Zeus MHD

While structures are different, power spectra appear identical.

See also Padoan et al. (2007) and 5123 MHD by Kowal & Lazarian (2007)
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Some History: Selected Simulations
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Grid Mach Force Authors Year Milestone

643 – No Orszag & Patterson 1972 First DNS

??3 � 1 shear Feireisen, Reynolds & Ferziger 1981 First compressible

2562 0.03-1.7 No Passot, Pouquet 1987

5122 1, 4 No Passot, Pouquet & Woodward 1988 First PPM

643 0.4-0.8 No Kida & Orszag 1990

643 1 Yes Kida & Orszag 1990

20482 ≤ 1 No Porter, Pouquet & Woodward 1992

2563 ≤ 1 No Porter, Pouquet & Woodward 1992

5123 ≤ 1 No Porter, Pouquet & Woodward 1994

10243 ≤ 1 No Porter, Woodward & Pouquet 1998 First 1K Euler

10243 ≤ 0.5 No Sytine et al. 2000

5123 1 Yes Porter, Pouquet & Woodward 2002

10243 6 Yes This work 2006
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Numerical Experiments

9

☞ In

➠ Euler equations; 3D periodic box; Cartesian mesh

➠ Isothermal EOS

➠ Mach 6

➠ Random driving force (with a stationary pattern)

➠ Uniform grids 643, . . . , 10243 with PPM

[Kritsuk et al. 2007, ApJ 665, 416]

➠ Structured AMR with refinement on shocks & shear up to 20483

[Kritsuk, Norman & Padoan 2006, ApJL 638, L25]

➠ ENZO code for cosmology and astrophysics [http://lca.ucsd.edu]

☞ Out

➠ Hydro fields, visualizations & statistical properties of turbulent structures
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Results I
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Structures in Physical Space
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Turbulent Structures: density
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2048
3 AMR

Mach 6
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Turbulent Structures: dilatation
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Dilatation
(MPEG animation)
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Turbulent Structures: vorticity
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|∇ × u|
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Dissipative Structures in Mach 6 Turbulence
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ρ |∇ × u∇× u∇× u|

|Φ · uΦ · uΦ · u| |∇ · u∇ · u∇ · u|
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Results II
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Statistics of Turbulence
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Lognormal PDF of Density
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In isothermal turbulence the density PDF is lognormal (this follows from an

invariance property of the equations, see Vazquez-Semadeni 1994; Padoan,

Nordlund & Jones 1997; Passot & Vázquez-Semadeni 1998; Nordlund &

Padoan 1999; Biskamp 2003)

p(ln ρ)d ln ρ =
1√

2πσ2
× exp

[

−1

2

(

ln ρ − ln ρ

σ

)2
]

d ln ρ, (1)

where the mean of the logarithm of the density, ln ρ, is determined by

ln ρ = −σ2/2. (2)

The standard deviation σ is a function of Mach number M

σ2 = ln (1 + b2M2). (3)
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Lognormal PDF of Density
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• Excellent fit quality over 8 decades in probability!

• Sample size 2 × 1011

• The best-fit value of b ≈ 0.260 ± 0.001 for log
10

ρ ∈ [−2, 2]
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Fractal Dimension of Mass Distribution
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• Mass dimension, Dm, is defined via M(`) ∝ `Dm

• On small scales, where dissipation dominates, Dm ≈ 2 ⇒ shocks

• At ` ∈ [40, 160]∆ dissipation is negligible and Dm = 2.4 ⇒ inertial range

• Dm is consistent with observations of molecular clouds

[e.g., Elmegreen & Falgarone 1996; Chappell & Scalo 2001]
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Velocity Power Spectrum at 1024
31024
3

1024
3
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• Large-scale excess of power at ` ∈ [256, 1024]∆ due to external forcing

• Short straight section in the inertial subrange ` ∈ [40, 256]∆, slope β = 1.95 ± 0.02

• Small-scale excess at ` < 40∆ due to the bottleneck phenomenon
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Numerical Dissipation and Bottleneck Phenomenon
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• At 5123, the slope of the “flat” part of the spectrum is primarily controlled by numerical

diffusion

• The resulting uncertainty is ∼ 30% of the difference between K41 and Burgers slopes!
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Velocity Structure Functions: 2nd order
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• Non-Kolmogorov exponents: ζ
‖
2

= 0.952 ± 0.004 and ζ⊥
2

= 0.977 ± 0.008;

ζK41

2
≡ 2

3
;

• Very good agreement with the velocity power spectrum index β = 1 + ζ2 = 1.95± 0.02

• The PS and SF applications are completely independent and even rely on different

parallelization paradigms
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Velocity Structure Functions: 3rd order
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• Non-Kolmogorov exponents: ζ
‖
3

= 1.26 ± 0.01 and ζ⊥
3

= 1.29 ± 0.01

• Four-fifths law for incompressibler turbulence requires ζK41

3
≡ 1
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Velocity Power Spectrum from Observations
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The power spectrum of supersonic turbulence in Perseus

• Power index β = 1.81 ± 0.10 (compare with β = 1.95 ± 0.02)

• Obtained via comparison of power spectra of integrated intensity maps and
single-velocity-channel maps [Lazarian & Pogosyan 2000]

• Modifications of β due to magnetic effects appear to be small, while turbulence remains
super-Alfvénic [Padoan et al., ApJ 661, 972, 2007]

[Padoan et al. 2006, ApJL 653, L125]
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Results III
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Cascade Phenomenology
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A Simple Compressible Cascade Model
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The kinetic energy is transferred through a hierarchy of scales by nonlinear interactions. In a

compressible fluid, the mean volume energy transfer rate ρu 2u/` is constant in a statistical

steady state [e.g., Lighthill 1955], therefore

u ∼ (`/ρ)1/3. (4)

Let’s consider scaling relations for vvv ≡ ρ1/3uuu

vp = (ρ1/3u)p ∼ ` p/3. (5)

For compressible flows, structure functions of v should be used instead of u

Sp(`) ≡ 〈|vvv(rrr + `̀̀) − vvv(rrr)|p〉 ∼ ` p/3, (6)

with S3 ∼ `. The scaling laws expressed by equation (6) are not necessarily exact and, as the

incompressible K41 scaling, may require intermittency corrections. Using v instead of u, one

properly accounts for the important density–velocity correlations in compressible flows.
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Turbulence Statistics: Models vs. Data
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Kolmogorov (1941) incompressible scaling, ζp = p/3
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Turbulence Statistics: Models vs. Data
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She & Lévêque (1994) incompressible intermittency corrections
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Turbulence Statistics: Models vs. Data
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Burgulence. The phase transition at p = 1 is due to the isolated nature of shocks
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Turbulence Statistics: Models vs. Data
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Boldyrev (2002) Kolmogorov-Burgers intermittency model
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Turbulence Statistics: Models vs. Data
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Absolute exponents for supersonic turbulence at Mach 6
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Turbulence Statistics: Models vs. Data
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Relative exponents for supersonic turbulence at Mach 6
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Turbulence Statistics: Models vs. Data
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Absolute mixed exponents for supersonic turbulence at Mach 6
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Turbulence Statistics: Models vs. Data
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Relative mixed exponents for supersonic turbulence at Mach 6
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Turbulence Statistics: Models vs. Data

34A model for the mixed exponents at Mach 6
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Intermittency Models: Summary
35The Hierarchical Structure (HS) model [She & Lévêque 1994] predicts

ζp

ζ3

= γp + C(1 − ηp). (7)

The codimension of the support of the most singular dissipative structures

C = (1 − 3γ)/(1 − η3). (8)

Two parameters: η — a measure of intermittency; γ — a measure of singularity of structures

Model η3 γ C

Kolmogorov (1941) 1 1/3 0∗

She & Lévêque (1994) 2/3 1/9 2

Boldyrev (2002) 1/3 1/9 1

HS1 model, v = ρu1/3v = ρu1/3v = ρu1/3 1/3 0 1.5

HS2 model, v = ρu1/3v = ρu1/3v = ρu1/3 1/6 1/9 0.8

Burgulence 0 0 1
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Summary
36

☞ Absolute scaling exponents of supersonic turbulence are measured for the first time.

☞ Low-order velocity statistics of supersonic turbulence deviate substantially from

Kolmogorov’s laws for incompressible turbulence. In particular, exponents of the 3rd order

velocity structure functions ζ3 > 1 at Mach 6.

☞ The fractal dimension of the mass distribution in the inertial range Dm ≈ 2.4.

☞ The mean volume energy transfer rate in compressible turbulent flows, ρu2u/`, is

very close to a constant. Therefore, vvv ≡ ρ1/3uuu is the primary variable of interest for

such flows.

☞ The statistics of density-weighted velocity vvv seem to obey the K41 laws in

incompressible, nearly incompressible, weakly compressible, compressible and

strongly compressible regimes.
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