Observational Signatures of First Stars

Andrea Ferrara

SISSA/International School for Advanced Studies

DIRECT DETECTABILITY

Schaerer 2002

STELLAR TRACKS

Bromm+ 2001

EMISSION SPECTRUM

IONIZING POWER

$$Q_i = 4\pi R_\star^2 q_i = 4\pi R_\star^2 \int_{\nu_i}^\infty \frac{F_\nu}{h\nu} d\nu, \qquad \qquad \bar{Q}_i(M) = \frac{\int_0^{t_\star(M)} Q_i(t,M) dt}{t_\star(M)},$$

Time-averaged quantities

	$M_{ m ini}$	lifetime	$\bar{Q}(H)$	$\bar{Q}({ m He}^0)$	$\bar{Q}(\text{He}^+)$	$\bar{Q}(H_2)$	$\bar{Q}({\rm He^0})/\bar{Q}({\rm H})$	$\bar{Q}(\mathrm{He}^+)/\bar{Q}(\mathrm{H})$
	1000.	not available						
	500.00	1.899E+06	6.802E + 50	3.858E + 50	5.793E+49	7.811E + 50	0.567E + 00	0.852E-01
	400.00	1.974E+06	5.247E + 50	3.260E + 50	5.567E + 49	5.865E + 50	0.621E+00	0.106E+00
	300.00	2.047E+06	3.754E + 50	2.372E+50	4.190E + 49	4.182E + 50	0.632E+00	0.112E + 00
	200.00	2.204E+06	2.624E + 50	1.628E + 50	1.487E+49	2.918E + 50	0.621E+00	$0.567 \text{E}{-}01$
[120.00	2.521E+06	1.391E + 50	7.772E+49	5.009E+48	1.608E+50	0.559E+00	0.360E-01
	80.00	3.012E+06	7.730E+49	4.317E + 49	1.741E + 48	8.889E + 49	0.558E+00	0.225E-01
	60.00	3.464E+06	4.795E + 49	2.617E + 49	5.136E + 47	5.570E + 49	0.546E + 00	0.107 E-01
	40.00	3.864E+06	2.469E+49	1.316E + 49	8.798E+46	2.903E+49	0.533E+00	0.356E-02
	25.00	6.459E+06	7.583E + 48	3.779E + 48	3.643E+44	9.387E + 48	0.498E+00	0.480 E-04
	15.00	1.040E+07	1.861E + 48	8.289E + 47	1.527E+43	2.526E+48	0.445E+00	0.820E-05
	9.00	2.022E+07	2.807E + 47	7.662E + 46	3.550E+41	5.576E + 47	0.273E+00	0.126E-05
	5.00	6.190E+07	1.848E + 45	1.461E+42	1.270E+37	6.281E + 46	0.791E-03	$0.687 \text{E}{-}08$
R	120/15	0.25	74	94	3×10 ⁵	64	1.25	4390

Schaerer 2002

HE NEBULAR LINES

Scannapieco+ 2002

LYA EW OF POP III STARS

CHEMICAL FEEDBACK

Schneider+ 2002, Schneider+ 2006

MASS OF EARLY STARS

Tornatore, AF & Schneider 2007

STAR FORMATION RATES

Scannapieco+ 2002

AVAILABLE SURVEYS

1. HK

Started 1980, 300 plates covering 2800 deg^2 (4100 deg^2) in the Northern (Southern) hemisphere, Plates visual inspection with binocular 10X microscope.Med-red (1 Å) spectroscopic follow-up with 2m-class telescopes

2. Hamburg/ESO Survey (HES)

Greatly increased numbers. Objective-prism survey, **2 mag deeper than HK**, regions of sky not sampled by HK. 8225 deg² above $|b|=30^{\circ}$. Selection using automatic spectral classification Medium-res follow-up using 4m-class telescopes, JHK from 2MASS

3. Sloan Digital Sky Survey (SDSS)

Med-res spectra + *ugriz photometry for about 70000 stars, not targeted specifically to search for metal-poor stars, inhomogeneous assembly. Useful to test the tail of MDF*

			-	
Survey	$\operatorname{Spectra}$	Unique	UBV	JHK
НК	14488	11212	4944	10438
HES	7465	6212	812	5078
SDSS-DR3	71396	~ 70000		

Table 1. Observational Follow-Up of Surveys

METALLICITY DISTRIBUTION FUNCTION

- *Total sample: 2700 stars with [Fe/H]*<-2.0 and 400 with [Fe/H]<-3.0
- Bias due to selection criterion in the range -2.5 < [Fe/H] < -2.0
- Possible underestimate of the metallicity of cooler stars; spectrum-by-spectrum analysis.

Salvadori, Schneider, AF 2006, Tumlinson 2006

MDF INTERPRETED – II.

- ✓ Stellar / chemical evolution of the Milky Way based on ∧CDM merger-tree
- ✓ Joint HK/HES Metallicity Distribution Function, 2756 stars with [Fe/H] < -2.

Cayrel+ 2004

ABUNDANCE PATTERNS

✓ 30/35 stars with -4.1 < [Fe/H] < -2.7
 ✓ 17 elements from C to Zn measured

Very small scatter: $\sigma < 0.05$ dex

Unlikely resulting from *individual* SN ejecta
Ratios *do not* match PISN yields

Salvadori, Schneider, AF 2006

SECOND GENERATION STARS

Salvaterra & AF 2002, Santos+2002

A PUZZLING EXCESS

GAMMA-RAY CONSTRAINTS

• *TeV-GeV* photons absorbed by optical/IR photons via e^+-e^- pair production.

• The observed spectrum of blazar reproduced by convolving the unabsorbed (power-law) spectrum with the optical depth:

$$(dN/dE)_{abs} \propto e^{-\tau} E^{-\alpha}$$

Mapelli+ 2005, Aharonian+ 2005

GAMMA-RAY CONSTRAINTS

Salvaterra+ 06, Cooray+ 06, Sullivan+06, Thompson+ 07a,b

FLUCTUATIONS

Clustering z > 5 galaxies

Salvaterra+ 2006, Fernandez & Komatsu 2006

INTENSITY

NIRB PHOTON BUDGET

	nW m ⁻² sr ⁻¹ @ 1.4 μ m
Observed	70
After zodi-subtraction (Wright)	17
Gamma rays	~15
Low-z galaxy contribution	> 8
Left unexplained	< 7
z>5 galaxies (from fluctuations)	2.5

- (Massive) PopIII stars strongly influcence first stages of cosmic reionization
- ♦ Transition to normal stars occurs when $Z > Z_{crit} \sim 10^{-5\pm l} Z_{\odot}$; strongly governed by dust
- Pop III SF continues to $z \sim 3$ at periphery of collapsing structures. Observable in LAEs ?
- Metallicity Distribution Function of EMPs in the MW halo: hints on primordial IMF
- \therefore Imprint of very early (z>6) star formation activity left in the NIRB
- * Experimental constraints on NIRB: intensity, fluctuations & pair-production opacity
- * PISN explosions at moderate (z < 6) redshifts with JDEM

Scannapieco+ 2005, Weinmann & Lilly 2005

