Intermittency and dissipative structures of ISM turbulence

E. Falgarone

LERMA/LRA, Ecole Normale Supérieure & Observatoire de Paris, France

P. Hily-Blant & J. Pety,

IRAM, Grenoble, France

and

G. Pineau des Forêts

Institut d'Astrophysique Spatiale, Orsay, France

- What is intermittency?
- Compared statistical & structural properties of extrema of line Centroid Velocity Increments (CVI) in two different environments
- Why dissipative structures?

"Star formation, Then and Now", Santa Barbara, 13-17 August 2007

What is the link with star formation?

Taurus-Auriga clouds: cold dust emission Hily-Blant 2004

Intermittency in incompressible and mildly compressible turbulence

Moisy & Jimenez JFM 2004

[1] non-Gaussian statistics of velocity derivative signals

more pronounced at small scale

[2] anomalous scaling of p^{th} order structures functions $\zeta_p \neq p/3$ She & Levêque 1994

[3] existence of **coherent structures** of intense vorticity, shear, rate of strain, ...

[4] non-local interactions between widely separated scales: small scale intermittency related to large scale properties of the flow, in HD and MHD Mininni et al. 2006, Pouguet et al. 2006

[5] clustering of coherent structures, inertial range intermittency Moisy & Jimenez 2004

Large scale environments: 30-parsec scale

Polaris flare: 27 pc \times 27 pc field 100 (red), 60 (green) and 12 μ m (blue) reprocessed IRAS maps Miville-Deschênes

Taurus-Auriga clouds: cold dust emission and B_{\perp} Heiles 2000

30 pc-scale:

same virial mass, $M_V \sim 4 \times 10^4~{
m M}_{\odot}$

• Polaris: $M_{gas}/M_V \sim 0.16$

• Taurus: $M_{gas}/M_V \sim 1$

Compared properties of the two parsec-scale fields

Parsec-scale:

• turbulent

 $M\sim$ 5 in Polaris,

 $M \sim$ 2 in Taurus

translucent

 $A_v \sim$ 0.8 to 1 mag in both fields

- Polaris: trans-Alfvénic turbulence dense core environment
- Taurus: cloud edge, no dense core

Taurus (left) – Polaris (right)

The tool: statistics of increments of line centroid velocities

IRAM-30m, 8000 spectra (now 35000, resol 11") Fully sampled, resolution 20"

Line centroid velocity:

$$C(\mathbf{r}) = \int T(\mathbf{r}, v_x) v_x dv_x / \int T(\mathbf{r}, v_x) dv_x$$

Miesch & Scalo 1999, Pety & Falgarone 2003, Brunt et al. 2003, ...

Extrema of line centroid increments trace extrema of

$$(\langle \omega_y \rangle^2 + \langle \omega_z \rangle^2)^{1/2}$$

Lis et al. 1996

PDFs of Centroid Velocity Increments with variable lags

Spatial distribution of largest CVIs

Taurus

- Elongated structures of thickness \leq 0.03 pc
- Taurus: parallel to B_{\perp} ,
- Polaris: rms orientation of 30°
- CVI $_{max}$ in Polaris \sim 3 CVI $_{max}$ in

Taurus

Self-similarity of PDFs of CVIs

0.5 Polaris large scale (5 pc) 25.5 KOSMA data, resolution 120", Bensch et al. 2001 0.4 0.3 0.5 pc 10-2 0.2 10^{-4} $\log_{10} P(\delta C_l)$ 0.1 10^{-4} 5 $\delta C_{l} / \sigma(\delta C_{l})$ 123.8 123.6 123.4 123.2 l_u [deg]

From 7 mpc to 3 pc

Scaling of CV p^{th} -order structure functions with p

Extended Self-Similarity exponents Benzi et al. 1993

HD scaling: She & $^{\text{S}_3}$ évêque 1994, $\theta = 1/3$, D = 1, $\beta = 2/3$

MHD scaling: Boldyrev et al. 2002, $\theta = 1/3$, D = 2, $\beta = 1/3$

Space-velocity slices: observations and MHD simulations

in Polaris Flare, across a large-CVI structure

CVIs extrema as tracers of "intermittency"

Same statistical and structural properties as intermittency of **velocity field** in incompressible or mildly compressible turbulence, magnetized or not:

- non-Gaussian wings of PDFs increase at small lags [1]
- anomalous scaling of CV structure functions [2]
- thin (0.02 pc) elongated structures of CVIs extrema, coherent over > 1pc
 [3]
- CVIs extrema trace intense velocity shears (PdBI data: velocity shear \sim 200 km s⁻¹ pc⁻¹ over 7 mpc) [1] not associated with density/column density peaks
- most turbulent field at large scale (Polaris) is most intermittent at small scale [4]

CVIs extrema as tracers of local enhanced dissipation: CO emission

Optically thin $^{12}CO(1-0)$ emission: $[^{12}CO]/[^{13}CO] > 35$

LVG analysis and translucent constraint:

dense and cold solutions ruled out: $n_{\rm H_2}$ < $10^3\,{\rm cm^{-3}}$, $T_k > 25{\rm K}$

CVIs extrema as tracers of local enhanced dissipation: $HCO^+(1-0)$

Observed HCO⁺ abundances are **more than one order of magnitude** above predictions

of **steady-state chemical models**: non-equilibrium chemistry Falgarone, Pineau des Forêts, Hily-Blant & Schilke 2006

Relaxation tracks versus observed HCO+ abundances

Cooling tracks for same initial density and two different UV shieldings, $A_v = 0.5$ and 1 mag. Observations meet models in the range T = 100-200 K, $n = 200-10^3$ cm⁻³

Conclusions and Open Questions

In translucent molecular gas:

- intermittency of velocity field similar to that of incompressible/mildly compressible turbulence
- intermittency more pronounced in most turbulent field at large scale
- \bullet observed intermittent structures: thickness: \leq 0.02 pc, down to 7mpc, coherent over \sim 3pc or more
- signposts of turbulence dissipation (thermal, chemical, radiative)

Open questions:

- nature of these structures, unlikely to be shocks
- role of magnetic fields
- actual smallest scale (ALMA) and radiative cooling rate
- observable helicity?