Studying Star Formation from First Principles?

Tom Abel
KIPAC/Stanford

mostly work with
Marcelo Alvarez, Matt Turk, Ji-hoon Kim, Peng Wang, John Wise, Fen Zhao KIPAC

Greg Bryan, Mike Norman, Brian O’Shea, Naoki Yoshida

Ralf Kähler (Scientific Visualization)

Talk Outline

- First Objects are very massive isolated stars
- First stars: HII regions, Supernovae, BH accretion
- Properties of First Galaxies

- ISM and molecular cloud formation
- Making Galaxies one star at a time
- Star formation in general
- Physics Challenges
- Computational Challenges

- public version of enzo at:
http://lca.ucsd.edu/portal/software/enzo
$\mathrm{C} / / 20$ Cobmological Simulation Code

Recap

First Stars are isolated and very massive

- Theoretical uncertainty: 30-300 solar mass

Many simulations with four very different numerical techniques and a large range of numerical resolutions have converged to this result. Some of these calculations capture over 20 orders of magnitude in density!

Non-equilibrium chemistry \& cooling, three body H2 formation, chemical heating, H 2 line transfer, collision induced emission and its transport, and sufficient resolution to capture chemo-thermal and gravitational instabilities.
Stable results against variations on all so far test dark matter variations, as well as strong soft
UV backgrounds.

- Perfectly consistent with observations! Could have been a real problem!

Tumultuous Life

- Entire mass range are strong UV emitters
- Live fast, die young. (2.7 Myr)
- Fragile Environment
- Globular Cluster mass halo but ~ 100 times as large -> small vesc $\sim 2 \mathrm{~km} / \mathrm{s}$
- Birth clouds are evaporated

3D Cosmological Radiation Hydrodynamics

Focus on point sources
Early methods: Abel, Norman \& Madau 1999 ApJ; Abel \& Wandelt 2002, MNRAS; Variable Eddington tensors: Gnedin \& Abel 2001, NewA
Latest: Abel, Wise \& Bryan 06 ApJL Keeps time dependence of transfer equation Adaptive ray-tracing of PhotonPackages using HEALPIX pixelization of the sphere. Photon conserving at any resolution.
Parallel using MPI and dynamic load balancing.
$\frac{1}{c} \frac{\partial I_{\nu}}{\partial t}+\frac{\partial I_{\nu}}{\partial r}=-\kappa I_{\nu}$
Transfer done along adaptive rays Case B recombination

The First HII Regions

Surprising Life - Many uncertainties from inaccurate stellar evolution predictions!

- No three dimensional stellar evolution calculations feasible. No ab initio predictions possible at present.
- Angular momentum transport
- Mixing from core, mixing into the atmosphere?
- Stellar winds, as well as episodic mass loss?
- Magnetic dynamo? At proto-stellar densities: guaranteed seed field of ~ 4 $\times 10^{-10}$ Gauss from recombination. Larger contribution from Biermann battery plausible
- Can do:
- Proto-stars (1st \& 2nd generation)
- HII regions (Hell \& Helll regions)
- Metal enrichment \& potential GRB remnants
- Beginning of Cosmic Reionization
- Relevant mass range : PopIII-1: 30-300 solar mass and PopIII-2: 10-100

Insignificant BH accretion - no mini quasars through this process.

Alvarez, Wise \& Abel in prep.

First few hundred million years: Cosmic

First few hundred million years: Cosmic

Beginning of cosmic reionization

Baryon Fraction \& Angular Momentum

Developing an ISM

Radial Profiles - Multi-phase ISM

HII regions starting to be confined inside galaxies

Making Galaxies one Star at a Time

30 solar mass cloud jeans number ~ 1
Mach 2 decaying turbulence

Application to present day star formation:

thermal + turbulent pressure equilibrium with ambient medium
31 levels of refinement: 11 orders of magnitude in length dynamic range: $\mathrm{dx} \sim$ 5 e 8 cm
64 cells per jeans length corresponds to 1e6 SPH particles per jeans mass or ~ 1e13 SPH particles for traditional (non-splitting) scheme
This run takes a few days on 16 (old) processors
2pc
$2 e-2 p c$

Physics and algorithmic challenges

- MHD
- Microphysics: first and foremost: Dust physics, molecules and ions affecting the thermal state of the gas
- Radiation transport of cooling radiation
- Cosmic ray acceleration, transport and pressure
- Subgrid models of B-field dynamos and stellar evolution

Computational Challenges

- With 1000 resolution elements per jeans mass we currently can follow galaxies that contain 10^{5} local jeans masses. Current maximum galaxy that can be hoped to be simulated today $\sim 1 e \int_{M W}^{10} l_{J}^{-}$lar masses.
- HII region dynamics requires resolution $\sim 0.01-0.1 \mathrm{pc}$ around massive star forming regions
- Effective load balancing for tens of thousands of processors
- Effective data mining and analysis framework

Building galaxies one star at a time. Why now?

- JWST, ALMA, LOFAR, MWA, etc. will not be able to observe individual stars but the smallest high redshifts galaxies as yet.
- Target dates: 2013

- We can and should predict the properties of these first galaxies to unprecedented detail:
- metals, stellar content, Lyman alpha strengths, nebular emission lines, etc. before they are seen.
- Compare with nearby fossil record in

Summary

- Wide range of birth, life \& death of the first massive stars are being explored on super computers. Second generation primordial stars have lower mass than the first ones.
- HII regions of the first stars evaporate their host-halos leave a medium with $\sim 1 \mathrm{~cm}^{-3}$ density but can we really assume no winds? Need better 3D stellar evolution calc.
- Enormous impact on subsequent structure formation
- different angular momentum of gas vs. dark matter in first galaxies
- turbulence/ISM
- Black hole accretion limited
- seed the first magnetic fields
- etc
- Developed methods are very well suited to stud star formation through cosmic time

Strong H_{2} suppression from dissociating UV

