SUPER STAR CLUSTERS:High Resolution Observations

James R. Graham (UCB)

Nate McCrady (UCLA)

&

Andrea Gilbert (LLNL) KIPT 2007-8-16

M82

- ACS F814W & NICMOS F160W/F222M images (25" × 65" or 0.4 × 1.1 kpc)
 - 10 Myr-old population of ≈ 20 SSCs in the central starburst
 - Strong reddening

Local Massive Clusters

~ 50 O stars ~ 10^{51} Ly_c s⁻¹ ~ 6 kpc, $A_{\rm v}$ ~ 4.5 mag ~ 0.3 - 1 Myr (Brandl et al. 1999)

~ 120 O stars (2 x $10^4 \,\mathrm{M}_{\odot}$) ~ 4 x $10^{51} \,\mathrm{Ly_c} \,\mathrm{s}^{-1}$ ~ 50 kpc, $A_{\rm v}$ ~ 1.2 mag ~ 2 - 4 Myr (Walborn et al. 2002)

M82


```
~ 20,000 O stars

~ 9 x 10^{53} Ly<sub>C</sub> s<sup>-1</sup>

~ 3.6 Mpc, A_V ~1–10 mag

~ 10 - 50 Myr

(Förster-Schreiber et al., 2003)
```

Near-IR is Essential

- NICMOS/WFPC2 images of the MGG-9 & 11 region in M82
 - Young clusters are only visible in the near IR because of heavy extinction
 - UV/optical cluster catalogs are contaminated by holes in extinction masquerading as sources

High Resolution M82 Cluster Survey

- HST/NICMOS + Keck2/NIRSPEC data for 19 clusters
 - Photometry & structural parameters (F160W)
 - H-band R = 23,000 echelle spectroscopy

High Resolution Observation

- Virial mass estimates $M \approx 9.8 \ r_h \sigma^2 / G$
- HST/NICMOS measures size
 - King model fits
 - Errors typically ~ 10 mas (0.2 pc)
 - Principal systematic error associated with defining background

Echelle Spectroscopy of M82 SSCs

- Keck2/NIRSPEC measures the velocity dispersion
 - Cross-correlated with accurate supergiant templates
 - Typical uncertainty ~ 400 m/s

Velocity Dispersion Measurements

- Velocity dispersion is measured using the cross correlation
 - Accurate stellar template match required
 - Kirian & Graham (2007) supergiant library
 - Systematic errors from Fourier filtering must be quantified
 - Noise biases derived velocities
 - Symmetric & antisymmetric parts of cross-correlation must be inspected
 - Quantify noise & identify spatially unresolved kinematic components

M82-SCC F

Average cross correlation for seven echelle orders

$$\sigma = 13.5 \pm 0.2 \text{ km/s}; r_h^a = 112\pm 2 \text{ mas}; r_h^b = 63\pm 1 \text{ mas}$$

$$M = 6.6 \pm 0.9 \times 10^5 \text{ M}_{\odot}$$

Top Heavy IMF?

- F has the best evidence for a top-heavy IMF
- Virial mass is based on kinematics of red supergiants
 - Cluster F has evidence for mass segregation

 $1~{\rm g~cm^{-2}} = 4800~M_{\odot}~{\rm pc^{-2}} \equiv 214~{\rm mag}$

Mass & Surface Density

	$oldsymbol{M}$	$R_{1/2}$	$oldsymbol{\Sigma}$	$P/k = G\Sigma^2/k$
Object	(M_{\odot})	(\mathbf{pc})	$(\mathrm{g~cm^{-2}})$	$(\mathrm{K}\ \mathrm{cm}^{-3})$
Hot cores	3800	0.5	1.0	4×10^{8}
ONC	4600	0.8	0.24	$2 imes 10^7$
Arches Cluster	2×10^4	0.4	4	$7 imes 10^9$
Globular Clusters	$2 imes10^5$	3.4	0.8	$3 imes10^8$
MGG-9	$1.6 imes 10^6$	3.4	9.1	3.3×10^{10}
MGG-11	$3.4 imes 10^5$	1.5	9.9	3.9×10^{10}

$$1~{\rm g~cm^{-2}} = 4800~M_{\odot}~{\rm pc^{-2}} \equiv 214~{\rm mag}$$

 $1 \text{ g cm}^{-2} = 4800 \ M_{\odot} \text{ pc}^{-2} \equiv 214 \text{ mag}$

Mass Loss from Young SSCs

Mass Loss from Young SSCs

M82 SSC Mass Spectrum

- Complete for $M_{\rm cl} > 3 \times 10^5 \, \rm M_{\odot}$
 - $dN/d\ln(M_{cl}) \sim M_{cl}^{-0.91 \pm 0.06}$
- Each decade of M_{cl} has approximately the same total number of stars
 - Total $M_{\rm cl}$ of 1.4 $\times 10^7$ M_{\odot}
- Comparable to clusters in the solar neighborhood & Galactic OB associations
 - Shallower in dIrr (Dowell, Buckalew & Tan 2007)
- An initial M^{-1} distribution is consistent with open & globular clusters populations
 - Low mass clusters preferentially destroyed (Elmegreen & Efremov 1997)

Proto-Globulars?

 Galactic globular cluster M82 SSCs are smaller (× 2) and have lower velocity dispersion (× 2)

Population Evolution

- Comparison with Galactic globular clusters suggests they adiabatically ($\sigma \propto 1/r_h$) loose $\sim 1/2$ their mass
 - Only 15% of the mass is in stars M > 8M $_{☉}$ for a normal IMF
 - Mass loss in addition to winds & SN is needed
 - Dynamical mass segregation & preferential ejection of low mass stars
 - Release of energy stored in binaries
 - Tidal & gravitational interactions

Antennae SSC Mass Spectrum

- The $\sim M^{-1}$ mass function appears universal, e.g., in the Antennae Galaxies
- Mass functions of SSCs vs. GCs Virial and photometric methods agree
 - No evidence for systematic variation of IMF with cluster mass

NICMOS is Resolution Challenged

• MGG-L is an older (≈ 50 Myr) SSC with modest foreground extinction that it can be studied at optical wavelengths

END