Probing the initial conditions of star clusters

Philippe André, CEA/SAp Saclay

Thanks to: A. Belloche (MPIfR Bonn),
P. Hennebelle (ENS Paris), F. Motte (Saclay),
N. Peretto (Manchester),
D. Ward-Thompson (Cardiff)

Outline:

- Core Mass Function in
cluster-forming clumps
- Core internal motions
- Relative core-core motions
- Evidence of large-scale collapse
- Conclusions

«Complete » surveys for cores in nearby clouds

Bolocam 1.1 mm continum survey of Ophiuchus
\rightarrow Clouds are mostly « empty » of cores
\rightarrow Inefficiency of core formation process ($\mathrm{M}_{\text {cores }} / \mathrm{M}_{\text {cloud }} \sim 1-10 \%$ Johnstone et al. 2004; Hatchell et al. 2005; Nutter et al. 2006)

K. Young et al. 2006

«Complete » surveys for cores in nearby clouds

1.2 mm mosaic of ρ Oph main cloud (IRAM $30 \mathrm{~m}+\mathrm{MAMBO}$)

\rightarrow Active cluster-forming clumps only observed at $\mathrm{A}_{\mathrm{V}}>10$; may be triggered (e.g. Nutter et al. 2006; H. Kirk et al. 2006)

The prestellar Core Mass Function (CMF) observed in cluster-forming clumps resembles the stellar IMF

\rightarrow One-to-one correspondence between core mass and star/system mass with high ($>50 \%$) local star formation efficiency in each core
\rightarrow IMF partly determined by cloud fragmentation at prestellar stage

- Potential timescale problem (Clark, Klessen, Bonnell 2007):
- Observed CMF is only a snapshot
- May not reflect intrinsic CMF if core lifetime varies with mass (e.g. $\left.\mathrm{t}_{\mathrm{ff}} \propto \mathrm{M}_{\mathrm{J}}\right)$
\rightarrow Not a serious problem: high-mass end of ρ Oph CMIF is robust

Mass Spectrum of ρ Oph Prestellar Condensations

Motte, André, Neri 1998 Mass, M (Mه ${ }^{1}$ André et al. 2007
See also: Testi \& Sargent 1998; Johnstone et al. 2000; Stanke et al. 2006; Alves et al. 2007; and for massive cores:
Beuther \& Schilke 2004; Reid \& Wilson 2005

Evidence that the $\boldsymbol{\rho}$ Oph condensations are gravitationally bound

- Narrow $\mathrm{N}_{2} \mathrm{H}^{+}(101-012)$ linewidths $(\Delta \mathrm{V}<0.5 \mathrm{~km} / \mathrm{s})=>$ subsonic levels of internal turbulence $\left(\sigma_{\text {turb }}<\mathrm{c}_{\mathrm{s}} \sim 0.2 \mathrm{~km} / \mathrm{s}\right.$)
- $\alpha_{\text {vir }}=\mathrm{M}_{\mathrm{vir}} / \mathrm{M}_{\mathrm{mm}} \sim 0.5-2$
- Infall signatures in, e.g., $\mathrm{HCO}^{+}(3-2)$ in some cases
$\rightarrow \rho$ Oph mm continuum condensations are self-gravitating for $\mathrm{M}_{\mathrm{mm}} \gtrsim 0.1 \mathrm{M}_{\mathrm{o}}$

Belloche et al. 2001; André et al. 2007

Relative motions of prestellar condensations within protoclusters: The case of the ρ Oph main cloud (L1688)

Line-of-sight velocities of the ρ Oph protocluster condensations

\rightarrow Global core-core velocity dispersion in ρ Oph protocluster:
$\sigma_{1 \mathrm{D}} \sim 0.36 \mathrm{~km} / \mathrm{s}<=>\sigma_{3 \mathrm{D}} \sim 0.6 \mathrm{~km} / \mathrm{s}<\sigma_{\mathrm{VIR}} \sim 2.1 \mathrm{~km} / \mathrm{s}$ (André et al. 2007)
Similar results in NGC 2264 (Peretto et al. 2006) \& NGC 1333 (Walsh et al. 2007)

Likelihood of interactions between protocluster condensations

Global core-core velocity dispersion:
$\sigma_{1 \mathrm{D}} \sim 0.37 \mathrm{~km} / \mathrm{s}<=>\sigma_{3 \mathrm{D}} \sim 0.65 \mathrm{~km} / \mathrm{s}$ for both NGC 2068 and ρ Oph ($25+41$ objects)
\rightarrow Collision time \sim Crossing time:
$\mathrm{D} / \mathrm{\sigma}_{3 \mathrm{D}} \sim 1-2 \times 10^{6} \mathrm{yr}$
>> condensation lifetime $\sim 1-5 \times 10^{5} \mathrm{yr}$
\rightarrow In general, not enough time for dynamical interactions prior to PMS stage

NGC2068 in $\mathrm{N}_{2} \mathrm{H}^{+}(1-0)$ (IRAM 30m)

Narrow $\mathrm{N}_{2} \mathrm{H}^{+}(101-012)$ lines ($\Delta \mathrm{V}<0.5 \mathrm{~km} / \mathrm{s}$)
\rightarrow Good determination of the l.o.s. velocities

André, Belloche, Motte, Peretto 2007, A\&A (astro-ph/0706.1535)

Comparison with the competitive accretion picture

- Protostellar seeds move around in the cluster potential and compete for accretion of background mass reservoir
- Varying mass accretion rates and accretion times --> full IMF from competitive accretion and dynamical ejections (Bonnell et al. 2001, Bate et al. 2003)

$$
\begin{aligned}
& \dot{\mathbf{M}}_{\mathrm{acc}} \sim \pi \rho_{\mathrm{back}} \mathbf{v}_{\text {rel }} \mathbf{R}_{\mathrm{acc}}^{2} \quad \text { (cf. Bonnell et al. 2001) } \\
& \rightarrow \dot{\mathbf{M}}_{\mathrm{acc}} \lesssim \mathbf{1 0}^{-6} \mathbf{M}_{\mathbf{0}} / \mathbf{y r}<\mathbf{a}_{\text {eff }}^{\mathbf{3}} / \mathbf{G} \text { in } \rho \text { Oph cluster } \\
& \text { (André et al. 2007) }
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\mathrm{n}_{\text {back }} \sim 10^{5} \mathrm{~cm}^{-3} \\
\mathrm{v}_{\text {rel }} \sim 0.3 \mathrm{~km} / \mathrm{s} \\
\mathrm{R}_{\text {acc }} \sim 3000 \mathrm{AU}
\end{array}\right.
$$

- Unlikely to be dominant at protostellar stage (Class 0/I): $\dot{\mathbf{M}}_{\text {acc }}$ too low compared to $\dot{M}_{\text {inf }}$ from collapse (see also Krumholz et al. 2005)
- May possibly govern the growth of starless condensations produced by gravoturbulent fragmentation toward an IMF-like mass spectrum

Evidence of large-scale collapse and central dynamical interactions in protoclusters: The example of NGC2264-C

Sharp central discontinuity in velocity

Observed vs. model spectra along the long axis of NGC2264-C

Collapse rather than rotation

Collapse

Rotation

Collapse rather than rotation

Rotation

Comparison with SPH collapse simulations of a Jeans-unstable ellipsoidal clump

Peretto, Hennebelle, André 2007, A\&A, 464, 983

Initial conditions:

Isothermal, highly unstable clump:
$\mathrm{M}_{\text {tot }}=1000 \mathrm{M}_{\mathrm{o}}$ $\mathrm{E}_{\text {therm }} / \mathrm{E}_{\text {grav }}=4 \%$ $\mathrm{E}_{\text {turb }} / \mathrm{E}_{\text {grav }}=5 \%$
\rightarrow Produced by an external trigger ?
\rightarrow Mainly gravitational fragmentation

Synthetic column density map

Position offset in arcsecond Synthetic PV diagram

Summary and Conclusions

- The formation of a protocluster requires a threshold column density (Av ~ 10) in the parent cloud.
- The stellar IMF in protoclusters is at least partly established at the prestellar stage.
- The observed core-core velocity dispersion is small (subvirial) and not consistent with strong dynamical interactions in general.
- Evidence that some young protoclusters are in a state of large-scale, global contraction induced by external triggers.
- Competitive accretion cannot be the dominant mechanism once individual protostellar collapse sets in.
- A mixed scenario may be the solution: Gravitational fragmentation in a magnetically supercritical clump generates cores which grow until they collapse

