Paramagnetic spin pumping with microwave magnetic fields

Steven M. Watts

Physics of Nanodevices
Materials Science Centre
University of Groningen
the Netherlands

Mesoscopic metal spintronics team

B. J. van Wees

C. H. van der Wal

Postdoc:

J. Grollier*

S. Watts

Ph.D. Student:

M. V. Costache

Students:

M. Sladkov

Techniques to obtain spin accumulation:

• Spin injection into metals and semiconductors:

Optical (circularly polarized light)

Not good for Si, metals or devices

Electrical (injection from ferromagnets)

Problems with mismatch & interfaces between FM and SC

• New method: Spin pumping, the "spin battery"

No charge currents required!

Spin currents generated by precessing magnetization in a ferromagnet

• Our new approach: Spin pumping with rf magnetic fields

No ferromagnet required!

Outline

Introduction:

Background 1: Spin injection and spin accumulation

Background 2: Spin battery device

Theoretical model:

- Time-dependent field gives spin accumulation
- Bloch equations in a uniform system
- The universal result $\hbar \omega$
- Some realistic numbers

Interface-enhanced spin accumulation

The spin-injection MASER

All-electrical spin injection by charge current

25

B (mT)

50

75

F. J. Jedema *et al.*, Nature **416** (2002)

Spin battery: interface scattering model

Spin transfer effect : spin polarized current → magnetization motion

Spin battery effect: magnetization motion ⇒ spin polarized current

For long τ_{sf} , pumped spin accumulation has the universal value $\hbar\omega$

A. Brataas, Y. Tserkovnyak, G. E. W. Bauer, & B. I. Halperin, PRB 66 (2002) Y. Tserkovnyak, A. Brataas and G. E. W. Bauer, PRL 11 (2002)

Coplanar wave guide to apply localized rf field:

Electrical detection: reference ferromagnet

Outline

Introduction:

Background 1: Spin injection and spin accumulation

Background 2: Spin battery device

Theoretical model:

- Time-dependent field gives spin accumulation
- Bloch equations in a uniform system
- The universal result $\hbar \omega$
- Some realistic numbers

Interface-enhanced spin accumulation

The spin-injection MASER

Spin accumulation in time-dependent magnetic fields

The spin-resolved density of states of nonmagnetic, conducting material in zero magnetic field:

Turn on a magnetic field, the states are Zeeman - split:

after relaxation, we have magnetization with no spin accumulation

Rate equation for spin accumulation generated by an oscillating magnetic field: $B_{\tau}(t) = B_0 \sin \omega t$

$$-\frac{d\mu_z}{dt} + I_{source} = \frac{\mu_z}{\tau}$$

Source term for spin accumulation:

$$-\frac{d\mu_{z}}{dt} + I_{source} = \frac{\mu_{z}}{\tau}$$

$$I_{source} = \frac{d}{dt}E_{Zeeman} = -g\mu_{B}\frac{dB_{z}}{dt}$$

Solution: μ_7 oscillates with field but out-of-phase by $\phi = \tan^{-1} \frac{1}{-1}$ Now consider a rotating magnetic field: $\vec{B} = (B_{xy} \cos \omega t, B_{xy} \sin \omega t, 0)$

At t=0, field generates collinear spin accumulation $\vec{\mu}$

Now consider a rotating magnetic field: $\vec{B} = (B_{xy} \cos \omega t, B_{xy} \sin \omega t, 0)$

The spin relaxation time causes the spin accumulation vector $\vec{\mu}$ to lag behind the field

The accumulated spins will precess around $\,B\,$ producing accumulation perpendicular to the plane of rotation

(See also A. Abragam, The Principles of Nuclear Magnetism)

Spin pumping in a bulk conductor

Bloch-type equations for spin accumulation $\vec{\mu}(t)$

$$-\frac{d\vec{\mu}}{dt} + \vec{I}(t) = \frac{\vec{\mu}}{\tau} - \left(\frac{g\mu_B}{\hbar} \vec{B} \times \vec{\mu}\right)$$
Spin relaxation

Key ingredient, the source term:

$$\vec{I}(t) = \frac{d}{dt}\vec{E}_{Zeeman} = -g\mu_B \frac{d\vec{B}}{dt}$$

$$-\frac{d\vec{\mu}}{dt} + \vec{I}(t) = \frac{\vec{\mu}}{\tau} - \left(\frac{g\mu_B}{\hbar}\vec{B} \times \vec{\mu}\right)$$

The field configuration:

Steady-state solution in the rotating reference frame:

$$-\frac{d\vec{\mu}}{dt} = \frac{\vec{\mu}}{\tau} - (\vec{\omega}_B + \vec{\omega}) \times \vec{\mu} + \hbar(\vec{\omega} \times \vec{\omega}_B) = 0$$

$$\mu_{\parallel} = \frac{(\omega_z - \omega)\tau(\omega_{xy}\tau)}{1 + (\omega_{xy}\tau)^2 + ((\omega_z - \omega)\tau)^2}\hbar\omega$$

In-phase with field

$$\mu_{\perp} = -\frac{(\omega_{xy}\tau)}{1 + (\omega_{xy}\tau)^2 + ((\omega_z - \omega)\tau)^2} \hbar \omega \quad \text{Out-of-phase}$$

$$\mu_z = -\frac{(\omega_{xy}\tau)^2}{1 + (\omega_{xy}\tau)^2 + ((\omega_z - \omega)\tau)^2}\hbar\omega \quad dc \ component$$

Analytic solution for steady-state dc spin accumulation:

$$\mu_z = -\frac{(\omega_{xy}\tau)^2}{1 + (\omega_{xy}\tau)^2 + ((\omega_z - \omega)\tau)^2}\hbar\omega$$

In general, we get only some small fraction of the universal result $\hbar \omega$

Special conditions to obtain the universal result:

Resonance,
$$\omega = \omega_z$$
: $\omega_{xy} \tau >> 1$

No dc field,
$$B_z=0$$
: $\omega_{xy}\tau, \omega\tau >> 1$ and $\omega_{xy} >> \omega$

Some realistic numbers...

• Standard NMR/ESR techniques can be used Near resonance, linear rf field = left + right rotating fields

Simulated signal for Al metal:

$$\tau = 0.1ns$$

$$\omega_{xy}\tau = 0.1 \quad (B_{xy} = 6mT)$$

$$\omega\tau = 10 \quad (f = 16GHz)$$

$$\frac{\langle f_z \rangle}{\hbar\omega}$$

$$0$$

$$\hbar\omega = 66\mu V$$

$$V_{\text{exp}} = 150nV$$

$$n_{spins} \sim 10^{15} cm^{-3}$$

$$-20$$

Outline

Introduction:

Background 1: Spin injection and spin accumulation

Background 2: Spin battery device

Theoretical model:

- Time-dependent field gives spin accumulation
- Bloch equations in a uniform system
- The universal result $\hbar \omega$
- Some realistic numbers

Interface-enhanced spin accumulation

The spin-injection MASER

Now add interface, and diffusion across interface

$$-\frac{\partial \vec{\mu}}{\partial t} + \vec{I}(x,t) = -D\nabla^2 \vec{\mu} + \frac{\vec{\mu}}{\tau} - \left(\frac{g\mu_B}{\hbar} \vec{B} \times \vec{\mu}\right)$$
Spin diffusion

...1-D system to be solved numerically

Unbounded system

 $\omega = 10 \text{ GHz}$ Weak ferromagnet model: $B_{xy} = 1 \text{ T}$, $B_z = 100 \text{ T}$

Pumped spin current across the interface

Dwell time, μ_{xy} no longer precesses in region II

Back-flow current randomizes xy components near interface

- The randomization leads to partial cancellation of the xy component near the interface
- This can be thought of as giving an effective *anisotropic relaxation time*:

 T_{XV} Reduced by back-flow current

 τ_z Not effected by back-flow current

$$\tau_z >> \tau_{xy}$$

Analytical model with anisotropic relaxation

$$\frac{d\mu_{x,y}}{dt} = \left(\vec{\omega}_B \times \vec{\mu}\right)_{x,y} - \frac{\mu_{x,y}}{\tau_{xy}} - \hbar \frac{d\omega_{x,y}}{dt}$$

$$\frac{d\mu_z}{dt} = (\vec{\omega}_B \times \vec{\mu})_z - \frac{\mu_z}{\tau_z}$$

$$\mu_z = -\frac{\omega_{xy}^2 \tau_{xy} \tau_z}{1 + \omega_{xy}^2 \tau_{xy} \tau_z + (\omega_z - \omega)^2 \tau_{xy}^2} \hbar \omega$$

Relevant regime: $\tau_{xy} << \tau_z$

Strongest effect off-resonance and for regions bounded at $L = \lambda_{\omega} = \sqrt{\frac{2\pi D}{\omega}}$

Outline

Introduction:

Background 1: Spin injection and spin accumulation

Background 2: Spin battery device

Theoretical model:

- Time-dependent field gives spin accumulation
- Bloch equations in a uniform system
- The universal result $\hbar \omega$
- Some realistic numbers

Interface-enhanced spin accumulation

The spin-injection MASER

Energy flows...

Energy is absorbed from the rf field to generate spin accumulation

Can we reverse the process?

An injected spin current drives the medium to produce gain:

$$\frac{d\vec{\mu}}{dt} = -\hbar \frac{d\vec{\omega}_B}{dt} - \frac{\vec{\mu}}{\tau} + \vec{\omega}_B \times \vec{\mu} + \vec{I}_s(t)$$

$$\frac{1}{2} = 3 \qquad 4$$

- 1. Pumping
- 2. Relaxation
- 3. Precession
- 4. Injection

Spin pumping with a spin injected current $\vec{I}_s = \frac{\mu_s}{\hat{z}} \hat{z}$

$$\vec{I}_s = \frac{\mu_s}{\tau} \hat{z}$$

Solutions:

$$\begin{split} \mu_{\parallel} &= \frac{(\omega_z - \omega)\tau(\omega_{xy}\tau)}{1 + (\omega_{xy}\tau)^2 + ((\omega_z - \omega)\tau)^2} (\hbar\omega + \mu_s) & \textit{Dispersive component} \\ \mu_{\perp} &= -\frac{(\omega_{xy}\tau)}{1 + (\omega_{xy}\tau)^2 + ((\omega_z - \omega)\tau)^2} (\hbar\omega + \mu_s) & \textit{Absorptive component} \\ \mu_z &= \mu_s - \frac{(\omega_{xy}\tau)^2}{1 + (\omega_{xy}\tau)^2 + ((\omega_z - \omega)\tau)^2} (\hbar\omega + \mu_s) & \end{split}$$

With $\mu_s = -\hbar \omega$ we can turn off effect of spin pumping! With $\mu_s < -\hbar \omega$ we can change the sign of the components

Absorption Emission

An LRC circuit model:

The sample magnetization couples to the circuit via the inductance:

$$L = L_0(1 + \eta \chi)$$

Define the complex susceptibility:

$$\chi = \chi' + i\chi''$$

$$\chi' = \frac{\mu_0 m_{\parallel}}{B_{xy}} \approx \frac{1}{4} g N_F \mu_B^2 \mu_0 \equiv \chi_0$$

$$\chi'' = \frac{\mu_0 m_\perp}{B_{xy}} \approx -\chi_0 \frac{\tau}{\hbar} (\hbar \omega + \mu_s)$$

The total impedance:

$$Z = R_0 + i\omega L + (i\omega C_0)^{-1}$$

$$= R_0 - \omega L_0 \eta \chi'' + i\omega L_0 (1 + \eta \chi') + (i\omega C_0)^{-1}$$

$$R'$$

$$L'$$

The condition for MASER operation: $R_0 + R' < 0$

Expressed in terms of the quality factor:

$$Q = \frac{\omega L_0}{R_0} > \left(\eta \chi_0 \frac{\tau}{\hbar} (\hbar \omega + \mu_s) \right)^{-1}$$

For Al metal: $Q \approx 1/\mu_s(eV) \sim 200$

Conclusions

- We describe a new way to produce dc spin accumulation in nonmagnetic metals and semiconductors
- Spin pumping with a rotating magnetic field can produce dc spin accumulations as large as $\hbar\omega$
- Spin accumulation can be interface-enhanced by engineering anisotropic relaxation
 - S. M. Watts, J. Grollier, C. H. van der Wal, and B. J. van Wees, PRL 96, 077201 (2006)
- Spin injection + spin pumping ⇒ spin-injection MASER
 S. M. Watts and B. J. van Wees, submitted to Nature Physics.