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The Hg chains are metallic 

d = 2.64 Å 
< <  distance between Hg atoms in liquid Hg = 3.0 Å

Looks like a metal ----



The Remarkable 1d Hg Chain Compound

* Tetragonal unit cell 
a = b = 7.54 Å , and  c = 12.34 Å

* Spacing between Hg atoms (at all temperatures) 
d = 2.64 Å   

Hg3-δAsF6

The Hg chains are incommensurate with the lattice!

Thus: a/d = 2.856 implying  Hg2.86AsF6



Note that d(T) = 2.64 Å, independent of temperature.  

Thus, the Hg – Hg interatomic potential is harmonic ---
Fourth order terms are sufficiently small that there is     
no thermal expansion or contraction of the Hg – Hg
spacing .

However, the lattice constants that define the unit cell with
the (AsF6)- ions exhibits thermal expansion and contraction 
--- as is typical of most solids.

Therefore, in Hg3-δAsF6, δ(T) is a function of the temperature.

As a result, Hg is reversibly excluded from the crystal and can be    
seen as small drops on the a-c and b-c surfaces of the crystal.



The Remarkable One-dimensional 
Hg Chain Compound

• Hg chains are incommensurate with the tetragonal 
lattice of (AsF6)- ions.

Result:  1d lattice dynamics
• Very weak interchain electronic coupling

Result:  1d electronic structure with many 
interesting features.

Hg3-δAsF6



Lattice dynamics of one-dimensional chains



Hg3-δAsF6

Two independent Phonon 
dispersion curves

a*-c* plane showing the 
expected 1d sheet at 3-δ
(Random interchain phase)

3d phonons

1d phonons

Different slopes
vs(3d) = 2.2 x 105 cm/s
vs(1d) = c = 4.4 x 105 cm/s

The Hg chains are 
incommensurate with the lattice

diffuse sheet of scattering



There is no long range order in 1d systems:
Landau and Lifschitz “Statistical Physics”  --- last page

Example:  1d ferromagnet (Ising model)

“Ground state”:  --- ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ ---

Defect state:       --- ↑↑↑↑↑↑↑↑↑↓↓↓↓↓↓↓↓↓ ---

Free Energy = J – kBTlnN
Long correlation length  ∼ “a”exp(J/kBT)

For N large, many such defects at random sites 
----- No long range order in 1d. 



No Long range order in 1d chains -----
Therefore, the Hg atoms in the 1d chains 

must be a liquid!

Note: Detailed studies show that the chains do not buckle! 
(Chains are linear to within approx 2%)

Liquid structure factor for 1d chains can be solved exactly:
R. Spal, C.-E. Chen, T. Egami, P. J. Nigrey and A. J. Heeger, Phys Rev. B 21, 3110 (1980)

where σ2 = d2(kBT/Mc2)

Solid curve: Harmonic potential: V(x) = (1/2)Mc2(x/d)2

Dashed curve: V(x) = (1/2)Mc2(x/d)2 + const(x/d)4

“Sheet” scattering at (001), (002), (003) ---------- (008) ---



Energy dispersive X-ray diffraction:
Use continuous part of the emission from an X-ray tube rather

than the line spectrum.  Different energies correspond 
to different wavelengths and different q-values.

• Capable of measuring S(q) out to high q-values.
• Perfect for measuring the 1d structure factor.

“Sheet” scattering at (100), (200), (300) ---------- (800) ---

Dotted curve: X-ray Data
Solid curve: Fit of the predicted S(q)

For details of both the theory and experiments:
R. Spal, C.-E. Chen, T. Egami, P. J. Nigrey and A. J. Heeger, Phys Rev. B 21, 3110 (1980).

Conclusion: Hg chains are 1d liquids.



Hg3-δAsF6

↑
No elastic scattering Bragg peak; the scattering observed   

by the X-ray  “diffraction” arises completely 
from inelastic scattering by the 1d “phonons”.

(No energy resolution in X-ray detector)

a*-c* plane showing the 
expected 1d sheet at 3-δ
(Random interchain phase)

3d phonons

1d phonons



“Phase Ordering” Phase Transition in Hg3-δAsF6

At 120K, the chains phase- lock into a “phase ordered” 3d structure

Order parameter Intensity of 
new satellite Bragg peaks at      

(1±δ,3-δ, 0)

Scattering in the sheets collapses    
into Bragg peaks.

Long range order; successive chains are out-of-phase.



Phonon dispersion relation
with Phason mode

Phason “gap” due to out-of-phase excitations:
At low T ----- phason gap = 1.2x10-4 eV = 1.5 K

J.M. Hastings, J. P. Pouget, G. Shirane, A. J. Heeger, N. D. Miro and A. G. MacDiarmid,PRL 39 1484 (1977)

T-dependence of the phason mode

Note:  Tc >> phason gap ------ long coherence length above Tc
characteristic of  very weakly coupled chains where Tc ∼ [JintraJinter]1/2



Low Temperature Specific Heat

C/T vs T2

C = αT + βT3

D. Moses, A. Denenstein, A. J. Heeger, P. J. Nigrey and A. G. MacDiarmid, PRL 43 369 (1979)

Linear term: Electronic origin??     Hg chains are metallic.

No --- Knight shift (NMR) data yield D(EF) ≈ 0.08 states/eV/Hg atom.
Thus, Cel < 2% of the observed linear term.

α large = →



Low Temperature Specific Heat

C/T vs T2C = αT + βT3

↑1d ↑3d

Phonon contributions (∝ Tdimensionality )

CL(1d) = (π2/3)NkBT/Θ1 where Θ1is the 1d Debye temperature.
Θ1 = 540 K 
vs = Θ1akB/πħ = 6x10 cm5/s  (OK re neutron data)

D. Moses, A. Denenstein, A. J. Heeger, P. J. Nigrey and A. G. MacDiarmid, PRL 43 369 (1979)



At low temperatures (Below 1.5K ) the phason gap dominates the 
Specifc heat because of the interchain phase ordering ----

1d contribution crosses over to 3d.

This implies that the contribution from the
phase-ordered Hg chains becomes 3d at low T
(At lowest T, slope increases and becomes T3 )

Best fit to the data yields a phason gap of 1.5K, in agreement with 
that found from inelastic neutron studies.



Optical reflectance measurements and their implications



Looks like a metal ----

Normal Incidence Reflectance from the a-b Plane:  

D. L. Peebles, C. K. Chiang, M. J. Cohen, A. J. Heeger, N. D. Miro and A. G. MacDiarmid, 
Phys. Rev. B 15 4607 (1977)

Plasma edge in reflectance like that of a simple free electron metal



Drude Theory --- Free Electron Theory --- Fit to R(ω)

↑ Hagen-Rubens
extrapolation
σdc = 104 S/cm

ħωp = 4.8 eV

ħ/τ = 0.27 eV

[ħωp/ε∞]1/2 = 2.9 eV

ε∞ = 2.7

σopt = (1/4π)ωp
2τ = 1.2 x104 S/cm

σdc = 104 S/cm



Anisotropy in the Reflectance

Normal Incidence Measurements from Different Crystal 
Facets at Angles with respect to a-b plane

Conclusion: One dimensional chains ---Metallic parallel to the Hg chains
Not metallic perpendicular to Hg chains.



Excellent fits to the anisotropic Reflectance;
No adjustable parameters (all obtained from ϕ = 0)



Transport measurements and their implications

Resistivity vs temperature: ρ||(T) and ρ⊥(T)

Magnetic field dependence of the resistivity: ρ||(H,T)



In a-b plane: Electrical Conductivity of a Metal
At 300K, ρ|| = 104 S/cm 

(4-probe measurements; Montgomery method)

• ρ|| ∝ T3/2  between 300K and 30K.
No sign of residual resistivity!

See inset in Figure.

• ρ⊥ has same T-dependence
Therefore, probably not intrinsic:
(ρ⊥ / ρ||) >>  102

• At 4.1K, ρ⊥(T) drops abruptly to ZERO.

C. K. Chiang, R. Spal, A. Denenstein, A. J. Heeger, N. D. Miro and A. G. MacDiarmid, 
Solid State Commun. 22 293 (1977)



In a-b plane: Electrical Conductivity of a Metal
At 300K, ρ|| = 104 S/cm 
(contactless ac method)

•Above 30K, ρ||(T) ∝ T3/2

•Below 30K, ρ||(T) ∝ T3

• At lower T, the T-dependence 
is even stronger (T3). 

• No sign of  the residual resistivity
expected from scattering by 
defects, imperfections and impurities.

T3

T3/2



Δρ/ρo vs H at 4.2 K on a log-log scale. The line represents an H2 dependence.
The data approach H2 dependence only for H < 1 gauss.

From this low field data, one can calculate the mobility using the Hall relation:
μeff = (Δρ/ρo H2) =  5 x 105 cm2/Vs

From dc resistivity ------ σ = 1/ρ = neμ yields  μ=  5 x 104 cm2/Vs.

Using μ=  5 x 104 cm2/Vs, one estimates electronic mean free path of 50 μm.



Resisitivity data imply electron mean free path of 
50 - 500  μm at low temperatures.

Remarkably perfect crystal !!????

However, chemical analysis, structural data and density 
measurements indicate 3:1 stoichiometry for Hg : AsF6.

Thus --- Hg2.82(AsF6)0.94 --- implies 6% charged defects.

The absence of residual resistivity is interesting and difficult to 
understand   ---- especially in a quasi-one-dimensional system where 
back-scattering causes localization.



Magnetic Field Induced Residual Resistivity in Hg3-δAsF6
(contactless ac technique)

T-dependence of ρ||(T)
(a-b plane)

Magnetic Field Dependence
ρ||(H,T) =  ρo(H) + ρ1(T)

Residual resisitivity is magnetic field 
dependent ---

ρo(H) approaches zero 
as H approaches zero!

D. Chakraborty, R. Spal, C.Chiang, A. Denenstein, AJH and A. MacDiarmid, Sol St Com. 27. 849 (1978).



Resistivity data summarized by

ρ||(H,T) =  ρo(H) + ρ1(T).

??? Why no residual resistivity despite clear evidence of defects  ???

??? What is the mechanism responsible for the field dependent 
“residual resistivity”  ???



Electronic Structure

ζ= (2td/a)( ħ2π2/2md2)
t = inter-family transfer
integral (t=0 is 1d limit)

5 electrons/chain in the unit cell

ħωp = 4.43 (m/m*)1/2 eV

ħωp(exp)  = 4.8 ± 0.3 eV

Thus:  m/m* ≈ 1.2
Fermi surface: Square cylinders with 

slightly rounded corners



Note that in k-space, the Lorentz force from the magnetic field 
along c-axis causes carriers to move around the cylinders



Phenomenological Model

Assumptions:
Defects and impurities ineffective on the planar 

sections of the Fermi surface giving a long scattering time, τp.

Defects and impurities are fully effective on the corners
of the Fermi surface giving a short scattering time, τc.

For H=0, the planar and corner sections act in parallel; ρ(T) is 
dominated by the planar sections with τp and no residual resistivity.

ρ(T) = (m/ne2 )[x τc + (1-x) τp] ≈ (m/ne2)τp for x<<1.

For H>0 (and parallel to c-axis), Lorentz force transfers all carriers 
into the corners where they are rapidly scattered by defects and
impurities, etc. 

Hence, Field  dependent residual resistivity.



But why no scattering on planar sections???

Suggestion (Conclusion??):
1d chains with attractive el-el interactions

For 1d chains with attractive interactions

• Resistivity goes to zero at T = 0 K.
• Localization characteristic of 1d is avoided.
• Peierls instability (metal-insulator  

transition) is avoided.
N. Menyard and J. Solyom, J. Low Temp. Phys. 12, 529 (1973)



Summary

1d lattice dynamics --- the only known example.



1d metallic chains



Resisitivity measurements provide evidence of attractive  
electron-electron interactions ---

Superconductivity in 1d at T = 0 K (?)



Magnetic field dependent residual resistivity that arises
from the Fermi surface of the weakly coupled chains



Anisotropic superconductivity: ρ⊥(T) drops to zero at 4.1K 

Intrinsic phenomenon ---
or 

Hg excluded from the chains on the b-c and a-c planes ???

Note: Anisotropic Meissner effect

R. Spal, C.K. Chiang, A. Denenstein, A.J. Heeger, 
N.D. Miro and A.G. MacDiarmid, 

Phys. Rev. Lett. 39 650 (1977).



Thanks for listening!
Research done in 1977-1979 (during the period of 

initial work on semiconducting and metallic 
polymers)

Not my most cited work  ---

But perhaps the best fundamental work ever done on 
one-dimensional phenomena in solids.
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