Spin Torque and Magnetic Tunnel Junctions

Ed Myers, Frank Albert, Ilya Krivorotov, Sergey Kiselev, Nathan Emley, Patrick Braganca, Greg Fuchs, Andrei Garcia, Ozhan Ozatay, Eric Ryan, Jack Sankey, John Read, Phillip Mather, Dan Ralph

Jordan Katine and Daniele Mauri (HGST)

Outline

- Spin torque switching in spin valves
- Switching speeds
- Asymmetry of switching currents (spin torque and spin accumulation)
- Reducing switching current levels
- Non-uniform spin torque systems
- Switching by concentrated spin current injection
- Vortex spin torque oscillator
- Spin torque in magnetic tunnel junction
- Probing spin torque as function of tunnel junction bias

Realizing Spin Transfer Effects

Nanopillar GMR SPIN VALVE

Low impedance $\sim 0.01 \Omega-\mu \mathrm{m}^{2}$ GMR ($\Delta R / R$) ~ 10-20\%

> Nanopillar MAGNETIC TUNNEL JUNCTION

High impedance $\sim 1-100 \Omega-\mu \mathrm{m}^{2}$
GMR ($\Delta \mathrm{R} / \mathrm{R}$) ~ < 50-90+\% (varies with barrier thickness)

Critical current densities quite similar in good spin valves and MTJs High polarization of MTJs may give a $\sim 2 x$ advantage

Conventional ferromagnet spin transfer devices require lateral dimensions \leq 250 nm to avoid significant self-field effects from required current levels

Practical issues for spin-torque switching: speed, switching currents, impedance

Spin Transfer Driven Magnetic Reversal

Nanopillar Spin-Valve

Time Resolved Measurements of Nanomagnet Dynamics

Challenges

In "standard" nanopillar devices, initial direction of spin torque is determined by a random thermal fluctuation from equilibrium. This leads to a random phase of the

Time-resolved measurements require devices with a non-zero angle between the free and the fixed layers. precessional dynamics.

$$
\begin{gathered}
\mathrm{V}(\mathrm{t})<1 \mathrm{mV}, \Delta \mathrm{t} \sim 10-100 \mathrm{psec} \\
\left|\overrightarrow{\tau_{s t}}\right| \sim|\vec{m} \times \vec{I} \times \vec{m}|=m^{2} I \cdot \sin (\theta)
\end{gathered}
$$

fixed layer

free layer

fixed layer

$\sin (\theta) \approx 1$

Measurements of Spin-Transfer Dynamics

Exchange biasing of the fixed Py layer at 45° to the easy axis results in a non-zero initial angle between magnetic moments of the fixed and free layers. This establishes a well-defined phase for precessional dynamics of the magnet.

Equilibrium Configuration of Magnetization

$$
\begin{gathered}
R=R_{0}+\Delta R \frac{1-\cos ^{2}(\theta / 2)}{1+\chi \cos ^{2}(\theta / 2)} \\
\chi=0.5 ; \mathrm{H}_{\mathrm{eb}}=1.5 \mathrm{kG}
\end{gathered}
$$

High Speed Spin Torque Switching

switching time ${ }^{1} \rightarrow \tau=\frac{\ln \left(\pi / 2 \theta_{0}\right)}{\left|\mathrm{I}-\mathrm{I}_{\mathrm{co}}\right|}$
$\theta_{0} \sim$ initial angle between
fluctuations or magnetic pinning
$\mathrm{I}_{\mathrm{c} 0}$ is $\mathrm{T}=0$ critical current

Spin polarized current must deliver sufficient spin angular momentum to nanomagnet to reverse magnetic moment.

Hence $\left(\mathbb{I}-\mathbf{I}_{\mathrm{c})}\right) \mathbf{x} \tau=$ constant

Faster reversal requires larger $\mathrm{I}_{\text {switch }}$

How fast is spin-transfer-driven switching?

Measure time dependent response of nanopillar resistance to step pulse.

Switching time <1 ns at high pulse amplitude

I. N. Krivorotov et al.

Science 307, 228 (2005).

Critical Current for Spin Torque Switching

$$
\begin{aligned}
& I_{c o}^{+}=\alpha e \mathbf{M}_{\mathrm{s}} \operatorname{Vol}\left[H+H_{a n}+2 \pi \mathbf{M}_{\mathrm{s}}\right] / h g(0) \approx 2 \pi \alpha e \mathbf{M}_{\mathrm{s}}{ }^{2} \mathrm{Vol} / h g(0) \\
& I_{c o}{ }^{-}=\alpha e \mathbf{M}_{\mathrm{s}} \operatorname{Vol}\left[H-H_{a n}-2 \pi \mathbf{M}_{\mathrm{s}}\right] / h g(\pi) \approx 2 \pi \alpha e \mathbf{M}_{\mathrm{s}}{ }^{2} \mathrm{Vol} / h g(\pi) \\
& J_{c o}{ }^{+} \approx 2 \pi \alpha e \mathbf{M}_{\mathrm{s}}^{2} t / h g(0) ; \quad J_{c o}{ }^{+} \approx 2 \pi \alpha e \mathbf{M}_{\mathrm{s}}{ }^{2} t / h g(\pi)
\end{aligned}
$$

$t=$ nanomagnet thickness, $\alpha=$ Gilbert damping parameter, $\mathbf{M}_{\mathbf{s}}=$ magnetization
$H_{a n}=$ shape anisotropy field

To reduce $J_{c o}$ - reduce $t, \mathbf{M}_{\mathrm{s}}$ and/or α but must maintain nanomagnet stability This requires $U_{K}=\mathbf{M}_{\mathbf{s}} \mathbf{H}_{\text {an }} \mathrm{Vol} / 2>50 k_{B} T$ - ten year bit stability

Decreasing Switching Currents

MRAM requirement:
Bit lifetime ~ 10 years $\rightarrow \mathrm{U}_{0}=1 \mathrm{eV}$ at RT With heating to $100^{\circ} \mathrm{C} \rightarrow \mathrm{U}_{0}=1.3 \mathrm{eV}$

$$
\begin{gathered}
\mathrm{I}_{\mathrm{c}} \propto \mathrm{M}_{\mathrm{s}}^{2} \alpha(\mathrm{Vol}) \\
\mathrm{U}_{0} \propto \mathrm{H}_{\mathrm{an}} \mathrm{M}_{\mathrm{s}}(\mathrm{Vol}) \\
\mathrm{H}_{\mathrm{an}} \sim \mathrm{M}_{\mathrm{s}}\left(\mathrm{t} / \mathrm{t}_{0}\right)
\end{gathered}
$$

Minimize M_{s} and sample volume Use shape anisotropy to maximize H_{k} thick and elongated

$$
\begin{array}{r}
4.5 \mathrm{~nm} \text { Py : } U_{0, P-A P}=0.85 \mathrm{eV}, I_{c 0}{ }^{+}=.42 \mathrm{~mA} \\
U_{0, A P-P}=0.73 \mathrm{eV}, I_{c 0}{ }^{-}=.39 \mathrm{~mA}
\end{array}
$$

$I_{c 0}=$ zero-temp critical current. Need $I_{c o}<100 \mu A$ Need to decrease damping and improve micromagnetics

Spin torque switching currents of low M_{s} free layers

Comparison with Single Domain LLG Simulations

Fitting to LLG simulation yields empirical spin-torque function and damping
N.B. Similar AP-P and P-AP switching currents in these devices

Spin Transfer Torque Function

$$
\frac{d \mathbf{m}}{d t}=\gamma\left(\mathbf{m} \times \mathbf{H}_{\text {eff }}\right)-\alpha\left(\mathbf{m} \times \frac{d \mathbf{m}}{d t}\right)+\frac{\mu_{B}}{e} \frac{g(\theta)}{m^{2} \sin (\theta)}(\mathbf{m} \times \mathbf{I} \times \mathbf{m})
$$

Effect of Electrode Structure on Spin Torque

Effect of Electrode Structure on Spin Torque

Pulsed Current Experiments

Pt Capped Devices

A - Torque amplitude - from spin current
and spin accumulation
$B=\frac{1-\gamma}{1+\gamma} \quad \gamma=\frac{I_{\text {swicch }, A P \rightarrow P}}{I_{\text {swich }, P \rightarrow A P}}$

Inverted Configuration

$>$ Spin pumping enhancement in inverted samples \rightarrow Better spin sinking in extended Cu lead
$>$ LLG fit deviation from data at large currents - microwave oscillations

	Au cap	Fe-Mn cap	Pt cap	Pt inv.
A	$0.25-0.30$	$0.12-0.16$	$0.18-0.21$	$0.45-0.52$
B	$0.02-0.19$	$0.32-0.33$	$0.11-0.23$	$0.08-0.13$
α	$0.025-0.030$	$0.033-0.037$	$0.033-0.037$	0.047

Spin-Transfer-Switching by Spatially Non-Uniform Currents

$150 \times 250 \mathrm{~nm}$ pillar

Result:
$\mathrm{A} 3 \mathrm{~nm} \mathrm{Al}_{2} \mathrm{O}_{3}$ insulating barrier with a nano-orifice is inserted into a Cu/Py spin-valve nanopillar

Spin-Transfer-Switching by Spatially Non-Uniform Currents

-The nano-aperture device requires much less current to induce switching than a nanopillar with uniform current flow.
-Current-induced switching may not result in full reversal of the nanomagnet

$150 \times 250 \mathrm{~nm}^{2}$ with 30 nm aperture	$\begin{aligned} & \text { P-AP } \\ & I_{\mathrm{c}^{+}}=180 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { AP-P } \\ & \mathrm{I}_{\mathrm{c}-}=50 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{J}_{\text {pillar }} \sim 4 \times 10^{5} \mathrm{~A} / \mathrm{cm}^{2} \\ & \mathrm{~J}_{\text {hole }} \sim 1.6 \times 10^{7} \mathrm{~A} / \mathrm{cm}^{2} \end{aligned}$	$\mathrm{R}=12 \Omega$
$100 \times 200 \mathrm{~nm}^{2}$ uniform current	$\begin{aligned} & \mathrm{P}-\mathrm{AP} \\ & \mathrm{I}_{\mathrm{c}+}=7.8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & A P-P \\ & I_{\mathrm{c}-}=4 \mathrm{~mA} \end{aligned}$	$\mathrm{J} \sim 1.2 \times 10^{7} \mathrm{~A} / \mathrm{cm}^{2}$	$\mathrm{R}=3 \Omega$

3D OOMMF Simulations

OOMMF is a public software developed by M.J.Donahue and D.G.
Porter from NIST
$>$ The effect of spin torque was modeled using LLG equation with the Slonczweski term for each cell. The simulations were performed taking into account the Oersted field created by electron flow through a wire.

$\mathrm{t}=1.6 \mathrm{~ns}$

$\mathrm{t}=2.3 \mathrm{~ns}$

$\mathrm{t}=3.3 \mathrm{~ns}$
$\mathrm{t}=3.96 \mathrm{~ns}$

$\mathrm{t}=5.9 \mathrm{~ns}$
0.5 mA

Spin Transfer with Magnetic Tunnel Junctions

Early Demonstrations with AlOx

- There is a small TMR measured with DC resistance at switching currents.
- Wear-out of barriers a concern due to high critical currents/voltages

Increasing spin torque in MTJs with three magnetic layers

Anti-aligned fixed layers

Spins from each fixed layer are in the same direction - more spin torque

Aligned

 fixed layersSpins from each fixed layer are in opposite directions - almost no spin torque

Spin Transfer Switching in 3-layer MTJs

$\mathrm{T}=77 \mathrm{~K}$

$I_{c, o+}=0.29 \pm 0.01 \mathrm{~mA}$ (shape and size $I_{c, o-}=-0.28 \pm 0.01 \mathrm{~mA}$ not optimized)
$J_{c, 0} / t=(2.9 \pm 0.4) \times 10^{6} \mathrm{~A} /\left(\mathrm{cm}^{2}-\mathrm{nm}\right)$, reduced by 40% compared to a Py free layer with one fixed layer: $5 \times 10^{6} \mathrm{~A} /\left(\mathrm{cm}^{2}-\mathrm{nm}\right)$

Note the similarity of I_{c} 's

G. D. Fuchs et al., Appl. Phys. Lett. 86, 152509 (2005).

Questions regarding spin torque in MTJs

- Why does TMR decrease with increasing bias?
- How does bias affect spintransfer torque?
- What is the nature of spin polarized transport in MgO based MTJs at finite bias?

Models that describe TMR(V) must also be consistent with spin torque, $N_{s t} I I(I)$ and $I(V)$

How to measure torque vs. current

A thermally stable free layer can only provide a measure of the spin-torque at the switching bias

A thermally unstable free layer can provide a measure of spin-torque continuously as a function of bias by applying \boldsymbol{H} and I so as to have opposing effects

Sample structure

- Bottom pinned SAF nearly cancels the dipole field and has a very large exchange field ($\sim 2 \mathrm{kOe}$)
- Devices are patterned with a 2:1 aspect ratio
- Have a range of thermal activation barriers
$\mathrm{CoFe}=\mathrm{Co}_{86} \mathrm{Fe}_{14}$
$\mathrm{Py}=\mathrm{Ni}_{91.5} \mathrm{Fe}_{8.5}$

Katine and Mauri - HGST
Lacour et al, APL 85, 4681, (2004)

Experimental approach

Lifetime in thermal activation regime

$$
\tau_{P / A P}=\tau_{o} \operatorname{Exp}\left[\frac{E_{a}}{k_{B} T}\left(1 \pm \frac{H-H_{d i p}}{H_{c, o}}\right)^{2}\left(1 \mp \frac{I \gamma(I)}{I_{c, o}}\right)\right]
$$

H(I) data - Linear Response

TMR decreases by over 40\%

H(I) data - Linear Response

TMR decreases by over 40\%

Break in data - crystalline anisotropy effect

Spin Transfer Efficiency

- Data are consistent with less than a 10% decrease in spin torque efficiency out to the switching bias point ($\sim 0.3 \mathrm{~V}$)

Tunnel Conductance Through MgO

s-like decays in the electrode Density of States for Fe (majority)|MgO|Fe(minority)

W. H. Butler, X. -G. Zhang, T. C. Schulthess, PRB 63, 054416 (2001). J. Mathon and A. Umerski, PRB 63, 220403 (2001).

MgO DOSData

Tunnel Conductance through MgO

Magnetic state dependent effective mass (decay length):
W. H. Butler, X. -G. Zhang, T. C. Schulthess, PRB 63, 054416 (2001).
J. Mathon and A. Umerski, PRB 63, 220403 (2001).

Simmon's model fit:

$$
\begin{aligned}
m_{a p}^{*} & =1.35 \pm 0.05 \\
m_{p}^{*} & =0.82 \pm 0.02
\end{aligned}
$$

Elastic scattering by barrier defects reduces the TMR
$\gamma(I) \sim$ const implies that:

- conductance for each spin channel varies with bias at a rate proportional to the zero bias
 DOS.
- electron scattering rate from defects is not strongly spin dependent!

Symmetry of Critical Currents

A better approximation:

Conclusions - ST in MTJs

- Spin-transfer torque per unit current is independent of bias within 10% up to 0.35 V (good news for spin-torque driven MRAM)
- Measurement brings new information to help understand the relationship between bias and spin-polarized tunneling
-Results are inconsistent with:
Free-electron, split-band tunneling models
Magnon emission models that reduce polarization factors
-Results are consistent with calculations due to Butler et al and Mathon et al for transport through ultra-thin MgO tunnel barriers allowing for defects in non-ideal tunnel barriers.

