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Hydrodynamic flows/circuits (Bernoulli)

• Work by gravity (or external pressure) drives the flow 

• Conservation law for the fluid mass 

• Different regimes of flow (constitutive relations, inertia, nonlinearities 
etc.)



Electronic flows/circuits (Ohm)
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• Work by electrochemical battery drives the current 

• Conservation law for the charge 

• Different regimes of flow (constitutive relations, diffusion, nonlinearities 
etc.)



Spintronics flows/circuits

• Work by magnetic precession (spin pumping): Precessing magnet is a 
spin condensate at effective chemical potential of  

• Approximate conservation law for the spin ⇒ spin diffusion length 

• Different regimes of flow (constitutive relations, diffusion, spin 
superfluidity etc.)
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Vorticity as a new mode of spintronic transport?

• We suggest vorticity—an archetypal topological texture—as a novel 
transport carrier (and a building block for functional  circuitries) 

• Can vorticity flow in insulating magnetic films as a conserved 
hydrodynamic quantity? 

• Can it be controlled electrically and are there obvious experimental 
signatures and possibly applications? 

Kim, Myers, and YT, PRL (2018)



How is vorticity normally controlled in a neutral system?

rotating superfluid container similar physics is responsible for 
neutron star pulsar glitches



Vorticity transport in Heisenberg magnets

Topological Transport of Vorticity in Heisenberg Magnets

Ji Zou,1 Se Kwon Kim,1, 2 and Yaroslav Tserkovnyak1
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We study a robust topological transport carried by vortices in a thin film of an easy-plane fer-
romagnetic insulator between two metal contacts. A vortex, which is a nonlocal topological spin
texture in two-dimensional magnets, exhibits some beneficial features as compared to skyrmions,
which are local topological defects. In particular, the total topological charge carried by vorticity
is robust against local fluctuations of the spin order-parameter magnitude. We show that an elec-
tric current in one of the magnetized metal contacts can pump vortices into the insulating bulk.
Di↵usion and nonlocal Coulomb-like interaction between these vortices will establish a steady-state
vortex flow. Vortices leaving the bulk produce an electromotive force at another contact, which is
related to the current-induced vorticity pumping by the Onsager reciprocity. The voltage signal de-
cays algebraically with the separation between two contacts, similarly to a superfluid spin transport.
Finally, the vorticity and closely related skyrmion type topological hydrodynamics are generalized
to arbitrary dimensions, in terms of nonsingular order-parameter vector fields.

Introduction.—Topology and geometry play an impor-
tant role in modern condensed matter physics [1]. Topo-
logical excitations, which are nonlinear order-parameter
textures are interesting physical objects both theoreti-
cally and experimentally [2]. Dynamics of these excita-
tions can result in conservation laws that do not result
from any symmetries of the system, but rather, derive
directly from their topology, rooted in the homotopic
properties of the associated fields. A magnetic insula-
tor is a rich platform to study various classes of topo-
logical excitations and their (hydro)dynamics. On the
practical flip side, we can exploit these topological ex-
citations to deliver information through charge insula-
tors more e↵ectively than using decaying quasiparticles,
such as phonons or magnons [3]. Chiral domain walls
in quasi-one-dimensional easy-plane (anti)ferromagnets
[4, 5], skyrmions in quasi-two-dimensional magnets [6],
and the winding of three-dimensional spin-glass textures
[7] have already been investigated extensively, in this con-
text.

Easy-plane magnets support topological excitations re-
ferred to as vortices. They are characterized by the
U(1) winding number, similar to superconducting vor-
tices, and thus are nonlocal, being immune to arbi-
trary local perturbations (or “surgeries,” in the jargon
of topologists). This makes them more robust for long-
ranged transport than the previously considered topo-
logical defects. In addition, their nonlocal nature en-
genders the Coulomb-like interaction, giving rise to a
finite-temperature Kosterlitz-Thouless transition. Also,
vortices are promising candidates for information and en-
ergy storage [8]. In this paper, we will develop the hy-
drodynamic picture of vortices and realize a superfluid-
like transport [4, 9–11], based on nonsingular textures in
easy-plane magnetic materials.

Main results and discussion.—To illustrate our key
findings, we focus on the two-terminal geometry of Fig. 1.

FIG. 1. A schematic for the proposed injection and detec-
tion of vortices. The electric current in the left magnetized
contact pumps vortices into the insulating bulk. The applied
voltage is Vin. The vortices leaving the system through the
right magnetized contact sustain the output voltage Vout. The
drag coe�cient Cd ⌘ Vout/Vin quantifies the e�ciency of the
topological vorticity transport.

An electric current in the left magnetic metal contact
with magnetization M exerts an adiabatic torque on the
spins of the film at the left boundary. For an appropriate
choice of M (polarized out of the plane), the work done
by the torque will energetically bias the vortex injection
into the bulk. By regarding these vortices as classical
objects, di↵usion and nonlocal Coulomb interactions [12]
will establish a steady-state distribution of vortex density
and its flow. This pumped vorticity will leave the sys-
tem and induce an electromotive force [13] at the right
contact, according to the Onsager-reciprocal process [14].
Using the drag coe�cient Cd ⌘ Vout/Vin to measure the
e�ciency of this topological transport, we find

Cd = (⇡⌘M)2�c�A/L , (1)

in the linear-response regime, when L ! 1 (so the
magnetic-insulator bulk dominates the impedance for the
vorticity flow). �c and � here are the conductivity of
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electrons in the metal contacts and the e↵ective conduc-
tivity of vortices in the insulating bulk, respectively. ⌘
is a phenomenological parameter measuring the contact
e�ciency of the charge-vorticity interconversion. L is the
length of the magnetic insulator in the x direction, and A
is the cross section of the metal contacts in the xz plane.

Vortex, being a nonlocal spin texture, shows some ben-
eficial features as compared to chiral domain walls and
skyrmions. For instance, the total charge of vorticity is
robust to local surgery, such as caused by spin reversals
caused by thermal fluctuations. We have the same to-
tal vorticity charge even if we arbitrarily deform the spin
configuration, as long as the changes are local and not
emanating to the boundary. In contrast, local fluctua-
tions could be detrimental to domain-wall chirality [15]
and skyrmion number.

At low temperatures, we can generate a vortex lat-
tice in a magnet by utilizing an adiabatic torque on the
boundary to control the e↵ective chemical potential as-
sociated with the vorticity. This can serve as a platform
to explore fundamental physics of emergent structures,
as the predecessors such as the Abrikosov vortex lattice
[16] in superconductors and the skyrmion lattice in chiral
magnets have done in the preceding half-century. Simi-
larly maintaining skyrmionic crystals out of equilibrium
can be more challenging, due to their local character (and
the associated lifetime, when they are metastable). An-
other important aspect is the long-ranged Coulombic in-
teractions between the vortices. We may exploit the asso-
ciated nonlinear e↵ects to realize semiconductor-inspired
transport phenomena like pn junctions [17]. It is also in-
teresting to explore the natural plasma analogies in the
ac response.

Continuity equation and stability.—Let us consider
a two-dimensional magnetic insulator at low tempera-
tures, such that the coarse-grained local spin-density field
m(t, x, y) = (mx,my,mz) captures its low-energy dy-
namics. The vortex density ⇢ and flux j constitute the
three-current jµ = (⇢, j) [18]:

jµ =
1

2⇡
✏µ⌫⇢✏zbc@⌫m

b@⇢m
c , (2)

where a, b, c run over three spin-space projections x, y, z
and µ, ⌫, ⇢ run over three time-space coordinates t, x, y. It
is easy to verify that the density [19] defined in Eq. (2) is
conserved: @µjµ = 0, so long as the vector field m(t, x, y)
is smooth such that @µ⌫m = @⌫µm. This is just the
continuity equation: @t⇢+r · j = 0.

To see that we can geometrically interpret the current
in Eq. (2) as a vortex flow, let us integrate the conserved
quantity:

Q =

Z

⌦
dxdy ⇢ =

1

2⇡

Z

@⌦
d�m2

k . (3)

Here, mk ⌘ (mx,my) is the planar projection of the vec-
tor field, � is its polar angle relative to the x axis, and ⌦,

@⌦ denote the bulk and boundary regions. In order to
ensure that � is well defined, we should require mk 6= 0.
In the case of an easy-plane anisotropy, mk = 1 on the
boundary away from the vortex core. Since the polar
angle � changes by 2⇡Q in one complete anticlockwise
passage around the core, we indeed see that Eq. (2) ia a
proper expression for the vortex density and current.

In the easy-plane limit, the topological robustness is
rooted in the map m : S1 ! S1, which can be classified
by the fundamental group [20] ⇡1(S1) = Z. The base
manifold is @⌦ ' S1 and mk serves as the XY order
parameter (hence S1 target manifold, in the easy-plane
case). We can thus see that magnetic textures with dif-
ferent Q are not smoothly connected to each other, and
the total charge, which is completely determined by the
boundary configuration, is robust to local surgery. In
general, such topological stability is a purely mathemat-
ical concept distinct from physical stability, which de-
pends on free energies of di↵erent configurations. Here,
the physical stability is closely related to the topolog-
ical robustness because a vortex is a nonlocal object,
which must be moved across the entire system (or to-
wards an antivortex) in order to be eliminated. Accord-
ing to Eq. (2), these topological properties extend to gen-
eral three-component vector field in two spatial dimen-
sions, even in the absence of quantized vortices.

Vortex charge pumping.—We illustrate the injection of
vorticity in Fig. 1, where the linear electric current den-
sity (per unit thickness) Jin = �Jinŷ in the left contact
exerts the local (adiabatic) torque (per unit area in the
yz plane) of the form [21]

⌧ = ⌘M ·m(Jin ·r)m . (4)

M = M ẑ here is the (uniform) out-of-plane magneti-
zation of the metallic contact, ⌘ is a phenomenological
parameter quantifying the strength of the torque, and m
stands for the magnetic texture of the insulator along the
interface. The work done by this torque on the magnetic
texture dynamics is proportional to the vorticity inflow:

W =

Z
dtdydz ⌧ · (m⇥ @tm) = ⇡⌘MIyinQ , (5)

where Iyin = Jy
inl and l is the thickness of the system in

the z direction. Importantly, the torque discriminates
between the topological charges Q of opposite sign. We
denote the work for Q = 1 as W+ ⌘ ⇡⌘MIyin. Note
that this work is invariant under the xz-plane reflection,
which leaves the vortex charge unchanged [see Fig. 2(a)].

At low temperatures, we can generate a vortex lat-
tice in a magnet by utilizing the torque derived above as
follows. For easy-xy-plane magnets, now in two spatial

3

FIG. 2. Structural symmetries of the vortices and the ap-
plied torque setup: (a) Vortex charge Q is invariant under the
xz reflection. Magnetic components parallel to the xz plane
flip, while the perpendicular component remains unchanged.
(b) A nonequilibrium vortex density can be controlled by the
electric current circulating around the magnetic region. Red
points represent vortex cores. Arrows represent electric cur-
rent I = I t̂, where the unit vector t̂ curls anticlockwise in the
metal contact that is magnetized out of the xy plane.

dimensions, the energy is given by

U =

Z

⌦
dxdy

⇥
A(rm)2 +Km2

z

⇤
/2

�
Z

@⌦
dl ⌘M ẑ ·

⇥
m⇥ (I ·r)m

⇤
, (6)

where the first term is the bulk energy composed of the
exchange energy / A and the anisotropy energy / K,
both positive. The second term is the interface energy
(integrated over the boundary of the magnet), due to
the torque, which is proportional to the net topological
charge within the magnet. The current is assumed to
flow around the magnetic insulator, tangentially to the
boundary: I = I t̂, with t̂ [see Fig. 2(b)] defined as the
anticlockwise unit vector. If the magnetization lies in the
xy plane, in a large K approximation, the energy can be
written in terms of the azimuthal angle �:

U = A

Z

⌦
dxdy (r�)2/2� ⌘MI

I

@⌦
dl ·r� . (7)

The second term is quantized as �2⇡⌘MIQ where Q =H
@⌦ dl · r�/2⇡ is the total topological charge. We can
minimize the energy

U(Q) =
⇡

4
AQ2 � 2⇡⌘MIQ (8)

with respect to Q, by considering a configuration r� =
Q
R2 ẑ⇥ r (corresponding to a uniform distribution of vor-
tices), where R is the radius of the sample. The first
term / Q2 is the Coulomb interaction energy and the
second, linear term is the torque-induced energy (which
controls the e↵ective “chemical potential” of the vortic-
ity). The equilibrium winding number for a given current
I is thus found to be Q = 4⌘MI/A. For a fixed Q, the
vortices could be expected to form a triangular lattice

when R is su�ciently small (depending on the vortex
core size a =

p
A/K), in analogy to the Wigner crystal

[22]. In the opposite regime, as there is no neutralizing
background of opposite charge, the vortices should pile
up on the edge, which would modify the above electro-
static consideration.
At finite temperatures, similarly to superfluid films, we

expect also a Kosterlitz-Thouless transition [23], with the
critical temperature of TKT ⇠ A/kB . At temperatures
above the transition, vortex entropy wins over their en-
ergetic cost, resulting in the proliferation of vortex pairs
and a change in the behavior of the correlation functions.
We do not expect the torque-controlled vortex chemical
potential to a↵ect the Kosterlitz-Thouless transition in
the thermodynamic limit, due to the long-range repul-
sion of vortices that prevents an extensive build-up of
vorticity.
Topological spin drag.—Below the temperature TKT,

the vortices are bound into neutral pairs, in thermody-
namic equilibrium, and the vorticity flow should, there-
fore, vanish in linear response. Above TKT, the free
vortices proliferate, which should result in a finite con-
ductivity �. We then expect the constitutive relation
jx = ��@xµ, in terms of the e↵ective electrochemical
potential µ = µc + V . µc / ⇢ here is the chemical po-
tential determined by the local vortex density ⇢ and V is
the electrostatic potential due to the nonlocal Coulomb
interaction. The current in the bulk is thus given by

jx =� �@xµ = �D@x⇢

+ 2⇡2A�

"Z x

0
dx0⇢(x0)�

Z L

x
dx0⇢(x0)

#
, (9)

where D is di↵usion coe�cient. In a steady state,
@xjx = 0, we obtain charge distribution ⇢(x) ⇠ ⇢Le�x/⇠+
⇢Re(x�L)/⇠, where ⇠ ⌘

p
D/4⇡2A�, when L � ⇠. We

can see that the vortices accumulate near the two ends
on a characteristic lengthscale of ⇠. The magnetic bulk
thus acts like a parallel-plate capacitor [see Fig. 3(a)].
We can estimate the screening length ⇠ at high tem-
peratures, T � TKT, by treating the vortex plasma as
nearly ideal and collisionless. To this end, we invoke the
Einstein relation [24]: D/� = kBT/⇢0, where ⇢0 is the
equilibrium density of the vortices (irrespective of their
charge). This gives ⇠ =

p
kBT/4⇡2⇢0A ⇠

p
T/TKT⇢0,

which can be interpreted as the Debye-Hückel length of
our two-dimensional two-component plasma.
From the reaction-rate theory [25], the vortex inflow

at the left boundary is given by

jLx = �+
L (T, I)� ��

L (T, I)

= �L(T )
h
e(W

+�µL)/kBT � e�(W+�µL)/kBT
i

⇡ 2�L(T )(W
+ � µL)/kBT , (10)

in linear response. Here, �±
L (T, I) is the nucleation

rate of the vortices with Q = ±1, in the presence of

a circulating current around an 
(insulating) Heisenberg magnet 
controls the effective “chemical 
potential of the vorticity”

Zou, Kim, and YT, PRB (2019)

the two-component 2D vortex 
plasma provides a functional 
semiconductor-type medium

⇢ =
z · @xm⇥ @ym

⇡
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Direct detection of vortex transport in superconductors

Long-Range Nonlocal Flow of Vortices in Narrow Superconducting Channels
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We report a new nonlocal effect in vortex matter, where an electric current confined to a small region
of a long and sufficiently narrow superconducting wire causes vortex flow at distances hundreds of
intervortex separations away. The observed remote traffic of vortices is attributed to a very efficient
transfer of a local strain through the one-dimensional vortex lattice (VL), even in the presence of
disorder.We also observe mesoscopic fluctuations in the nonlocal vortex flow, which arise due to ‘‘traffic
jams’’ when vortex arrangements do not match a local geometry of a superconducting channel.
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Phenomena associated with vortex motion in super-
conductors have been subject to intense interest for
many decades, as they are important both for applications
and in terms of interesting, complex physics involved.
Vortices start moving when the Lorentz force fL acting
on them exceeds pinning forces arising from always-
present defects. The force is determined by the local
current density j and, hence, the resulting vortex motion
is confined essentially to the region where the applied
current flows [1,2]. There are only a few cases known
where vortex flow becomes nonlocal (i.e., not limited to
the current region), most notably in Giaever’s flux trans-
former [3] and in layered superconductors [4]. In the
former case, fL is applied to vortices in one of the super-
conducting films comprising the transformer, while the
voltage is generated in the second film, due to electro-
magnetic coupling between vortices in the two films [3,5].
In layered superconductors, a drag effect (somewhat simi-
lar to that in Giaever’s transformer) is observed due to
coupling between pancake vortices in different layers.
Both nonlocal effects occur along vortices and are basi-
cally due to their finite rigidity. A high viscosity of a
vortex matter can also lead to a nonlocal response in the
direction perpendicular to vortices [6–9]. In this case,
local vortex displacements induced by j create secondary
forces on their neighbors pushing them along. Such
nonlocal correlations were observed in the vicinity of
the melting transition in high-temperature superconduc-
tors [8,9]. This is a dynamic effect where VL’s regions—
generally moving at different speeds due to different
above-critical currents—suddenly become locked in a
long-range collective motion. In the absence of a driving
current, such viscosity-induced nonlocality is expected to
die off at a few vortex separations [6,7].

In this Letter, we report a nonlocal effect of a different
kind, which arises in the absence of a driving current due

to a long-range collective response of a rigid one-dimen-
sional (1D) VL and survives at strikingly long distances,
corresponding to several hundred vortex spacings.
Nonlocal vortex flow in our experiments is observed at
distances up to ! 5 !m, provided a superconducting
channel contains only one or two vortex rows. To the
best of our knowledge, such nonlocality has neither
been observed nor considered theoretically.

Our starting samples were thin films of amorphous
superconductor MoGe (" ! 60) with various thicknesses
d from 50 to 200 nm. We have chosen amorphous films
because they are known for their quality and very low
pinning and have been extensively studied in the past in
terms of pinning and vortex flow (see, e.g., [10,11]). The
sharp superconducting transitions ( < 0:1 K) measured
on mm-sized samples of our films indicate their high
quality and homogeneity. The critical current jC in inter-
mediate fields b " H=Hc2 ! 0:3–0:6 was measured to be
! 102 A=cm2 (at 5 K), where H is the applied field and
Hc2 the upper critical field.jC increased several times at
lower temperatures. The MoGe films were patterned into
multiterminal submicron wires of various widths w (be-
tween 70 nm and 2 !m) and lengths L (between 0.5 and
12 !m) using e-beam lithography and dry etching (see
Fig. 1). Electrical measurements were carried out using
the standard low-frequency (3 to 300 Hz) lock-in tech-
nique at temperatures T down to 0.3 K. The results were
independent of frequency, which proves that the measured
ac signals are just the same as if one were using a dc
measurement technique, provided the latter could allow
the same sensitivity ( < 1 nV). The external field H was
applied perpendicular to the structured films. For brevity,
we focus below on the results obtained in the nonlocal
geometry and omit discussions of the complementary
measurements carried out in the standard (local) four-
probe geometry.
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The nonlocal geometry is explained in Fig. 1. Here, the
electric current is passed through leads marked I! and
I" and voltage is measured at terminals V! and V". In
this geometry, the portion of applied current I that
goes sideways along the central wire (see Fig. 1) and
reaches the area between the voltage probes is negligibly
small. Indeed, in both normal and superconducting states
[12], the current along the central wire decays as / I #
exp$"!x=w%, which means that the current density re-
duces by a factor of 10 already at distances x & w and,
typically, by 1010 in the nonlocal region (x ' L) in our
experiments. This also means that all vortices in the
central wire, except for one or two nearest to the cur-
rent-carrying wire, experience the current density many
orders of magnitude below the critical value. Therefore,
no voltage can be expected to be observable in the non-
local geometry. In stark contrast, our measurements
revealed a pronounced nonlocal voltage VNL, which
emerged just below [13] the critical temperature TC and
persisted deep into the superconducting state (Fig. 1).

The signal appeared above a certain value of H &
0:2Hc2, reached its maximum at $0:5–0:7% #Hc2 and
then gradually disappeared as H approached Hc2. VNL
was found to depend linearly on I that was varied
between 0.2 and 5 "A. At lower I, VNL became so small
( < 100 pV) that it disappeared under noise, while higher
currents led to heating effects. The linear dependence
allows us to present the results in terms of resistance
RNL ' VNL=I. With increasing L, RNL was found to
decay relatively slowly (for L ( 4 "m) and quickly dis-
appeared for longer wires as well as for the wide ones
(w ) 0:5 "m) (Fig. 2). The general shape of RNL$H%
curves was identical for all samples but fluctuations
(sharp peaks) seen in Fig. 1 varied from sample to

sample. A closer inspection of the fluctuations for differ-
ent samples shows that they have the same characteristic
interval of magnetic field over which RNL changes rapidly.
This correlation field BC corresponds to the entry of one
flux quantum !0 into the area L # w between the current
and voltage leads, so that BC & !0=L # w.

To understand the nonlocal signal, we note that within
the accessible range of I, its density inside the current-
carrying wire was in the range of & 103 to 105 A=cm2

(i.e., * jC) and, accordingly, caused a vortex flow
through this wire. Indeed, whenever VNL was observed,
measurements in the local geometry showed the behavior
typical for the flux flow regime. This indicates that the
nonlocal resistance is related to the vortex flow in the
current-carrying part of the structures, which then some-
how propagates along the central wire to the region
between V! and V" terminals, where no electric current
is applied. The mechanism of the propagation can be
understood as follows. The Lorentz force —acting on

FIG. 2. Dependence of RNL on length L and width w of the
central wire. (a) Nonlocal resistance at T ' 6:0 K for different
wires (their L and w values are shown on the graph). Curves are
shifted vertically for clarity. (b) Nonlocal resistance at its
maximum value as a function of L (w ' 150 nm). The signal
at 6.0 K is also representative of the behavior observed at lower
T. The dashed line is a guide to the eye. The inset shows
temperature dependence of the field corresponding to the dis-
appearance of R NL (solid circles). The solid line is Hc2$T%
measured on macroscopic films.

FIG. 1. Nonlocal resistance RNL as a function of applied field
H measured on a 150 nm wide wire at a distance of 1 "m
between the current and voltage leads. Different curves are
shifted vertically for clarity (RNL is always zero in the normal
state). The inset shows an AFM image of the studied sample.
The vertical wire in this image is referred to as central wire.
Scale bar, 1 "m.

P H Y S I C A L R E V I E W L E T T E R S week ending
11 JUNE 2004VOLUME 92, NUMBER 23

237001-2 237001-2

vortices located at the intersection between current-
carrying and central wires—pushes/pulls them along
the central wire. In the absence of edge defects along
this wire, the surface barrier prevents these vortices from
leaving a superconductor [14] and, hence, the local dis-
tortion of the VL can be expected to propagate along the
central wire, away from the current-carrying region. If
the vortex motion reaches the remote intersection be-
tween the central and voltage wires, a voltage is generated
by vortices passing through this region. For an infinitely
rigid VL, such a local distortion would propagate any
distance. However, for a soft VL and in the presence of
disorder, the lattice can be compressed and vortices be-
come jammed at pinning sites. The softer the lattice, the
shorter the distance over which the distortion is damp-
ened. Note that, as we discuss a dc phenomenon, there
should exist a constant flow of vortices through the
sample. We believe that this is ensured by large contact
regions that act as vortex reservoirs.

The interplay between pinning and VL’s elasticity is
important in many vortex phenomena, and the spatial
scale, over which a VL behaves as almost rigid (responds
collectively), is usually determined by the correlation
length RC [15,16]. This concept had been successfully
used in the past to explain the behavior of jC in macro-
scopic thin films, where the only relevant elastic modulus
defining RC is the shear modulus C66 [17,18]. For our
particular films, the maximum value of RC can be esti-
mated as ! 20a0(reached at ! 0:3Hc2) and then RC
gradually reduces to ! a0 as H approaches Hc2 (here,
a0 ! "!0=B#1=2 is the VL period and B the magnetic
induction) [10,19]. This length scale is in agreement
with predictions [6,7] and clearly too short to explain
the observed RNL. For example, at 4.5 K, RNL was de-
tected at distances up to 5 !m and in fields up to 3.5 T.
This means that the entire vortex ensemble between the
current and voltage wires, which is over 200 vortices
long, is set in motion by a localized current.

To explain these unexpectedly long-range correlations,
we argue that the VL in mesoscopic wires is much more
rigid than in macroscopic films due to its 1D character
and the presence of the edge confinement that prevents
transverse vortex displacements. Indeed, if there are only
a few vortex rows in a narrow channel, the only possible
deformation of the lattice is via uniaxial compression.
This deformation is described by compressional modulus
C11 $ C66. In this case, the characteristic length, over
which one should expect collective response, is much
longer and given by another correlation length !C %
"C11="L#1=2, where "L ! Fp=rp is a characteristic of
the pinning strength, Fp % jC & B the bulk pinning force,
and rp the pinning range (rp ! a0=2 for b > 0:2)
[2,20,21].

To calculate !C"H# we used the expression C11 ! !0 &
B="2 &#0 & !2 & a0 & k# expected for a 1D channel [22].
Here, ! is the field- and temperature-dependent penetra-

tion depth [22,23] and k the wave vector of VL deforma-
tion. Our numerical simulations show that the most
relevant k is given by VL’s distortion in the cross-shaped
regions [see Fig. 3(b)] and, accordingly, we assume k !
1=w. The estimated !C in intermediate fields at T % 6 K
is ! 3–10 #m, in agreement with our experiment. The
above model also describes well the observed field de-
pendences of RNL. The theory curve in Fig. 3(a) takes into
account that the nonlocal signal should decay as RNL /
exp"'L=! C# where !C % "!0:w#1=2=2!"#0:jC#1=2 and
that, for narrow wires, it is thermodynamically unfavor-
able for vortices to penetrate the narrow wires until H
reaches a critical value HS ! !0=$%w. The latter effect
is modeled by pinning at the surface barrier, which re-
sults in an additional part in jC / exp"'H=HS#. The
disappearance of RNL below 4 K is attributed to higher
jC at lower T. Note that the exponential dependence
implies that changes in jC by a factor of 4, which occur
below 5 K, result in a rapid suppression of RNL.

It is clear that the above description applies only to
wires that accommodate just a few vortex rows. As the
number of rows increases, the VL gains an additional

FIG. 3. (a) Comparison of RNL"H# observed experimentally
(lower curve; data of Fig. 1 at 6 K) with the nonlocal signal
expected in the proposed 1D model (upper curve) and with
results of our numerical analysis (middle curve). (b),(c)
Snapshots of vortex configurations corresponding to pro-
nounced changes in mobility of 1D vortex matter. Dashed
lines indicate the average orientation of vortex rows in the
cross areas.
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A little bit of “microscopics”

⌧ = ⌘M ·m(J ·r)m
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We study a robust topological transport carried by vortices in a thin film of an easy-plane fer-
romagnetic insulator between two metal contacts. A vortex, which is a nonlocal topological spin
texture in two-dimensional magnets, exhibits some beneficial features as compared to skyrmions,
which are local topological defects. In particular, the total topological charge carried by vorticity
is robust against local fluctuations of the spin order-parameter magnitude. We show that an elec-
tric current in one of the magnetized metal contacts can pump vortices into the insulating bulk.
Di↵usion and nonlocal Coulomb-like interaction between these vortices will establish a steady-state
vortex flow. Vortices leaving the bulk produce an electromotive force at another contact, which is
related to the current-induced vorticity pumping by the Onsager reciprocity. The voltage signal de-
cays algebraically with the separation between two contacts, similarly to a superfluid spin transport.
Finally, the vorticity and closely related skyrmion type topological hydrodynamics are generalized
to arbitrary dimensions, in terms of nonsingular order-parameter vector fields.

Introduction.—Topology and geometry play an impor-
tant role in modern condensed matter physics [1]. Topo-
logical excitations, which are nonlinear order-parameter
textures are interesting physical objects both theoreti-
cally and experimentally [2]. Dynamics of these excita-
tions can result in conservation laws that do not result
from any symmetries of the system, but rather, derive
directly from their topology, rooted in the homotopic
properties of the associated fields. A magnetic insula-
tor is a rich platform to study various classes of topo-
logical excitations and their (hydro)dynamics. On the
practical flip side, we can exploit these topological ex-
citations to deliver information through charge insula-
tors more e↵ectively than using decaying quasiparticles,
such as phonons or magnons [3]. Chiral domain walls
in quasi-one-dimensional easy-plane (anti)ferromagnets
[4, 5], skyrmions in quasi-two-dimensional magnets [6],
and the winding of three-dimensional spin-glass textures
[7] have already been investigated extensively, in this con-
text.

Easy-plane magnets support topological excitations re-
ferred to as vortices. They are characterized by the
U(1) winding number, similar to superconducting vor-
tices, and thus are nonlocal, being immune to arbi-
trary local perturbations (or “surgeries,” in the jargon
of topologists). This makes them more robust for long-
ranged transport than the previously considered topo-
logical defects. In addition, their nonlocal nature en-
genders the Coulomb-like interaction, giving rise to a
finite-temperature Kosterlitz-Thouless transition. Also,
vortices are promising candidates for information and en-
ergy storage [8]. In this paper, we will develop the hy-
drodynamic picture of vortices and realize a superfluid-
like transport [4, 9–11], based on nonsingular textures in
easy-plane magnetic materials.

Main results and discussion.—To illustrate our key
findings, we focus on the two-terminal geometry of Fig. 1.

FIG. 1. A schematic for the proposed injection and detec-
tion of vortices. The electric current in the left magnetized
contact pumps vortices into the insulating bulk. The applied
voltage is Vin. The vortices leaving the system through the
right magnetized contact sustain the output voltage Vout. The
drag coe�cient Cd ⌘ Vout/Vin quantifies the e�ciency of the
topological vorticity transport.

An electric current in the left magnetic metal contact
with magnetization M exerts an adiabatic torque on the
spins of the film at the left boundary. For an appropriate
choice of M (polarized out of the plane), the work done
by the torque will energetically bias the vortex injection
into the bulk. By regarding these vortices as classical
objects, di↵usion and nonlocal Coulomb interactions [12]
will establish a steady-state distribution of vortex density
and its flow. This pumped vorticity will leave the sys-
tem and induce an electromotive force [13] at the right
contact, according to the Onsager-reciprocal process [14].
Using the drag coe�cient Cd ⌘ Vout/Vin to measure the
e�ciency of this topological transport, we find

Cd = (⇡⌘M)2�c�A/L , (1)

in the linear-response regime, when L ! 1 (so the
magnetic-insulator bulk dominates the impedance for the
vorticity flow). �c and � here are the conductivity of
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- magnetization of the metal contact

- magnetic texture of the insulator

Onsager-reciprocal 
motive force

charge current vortex flux

Ẇ =

Z
dtdy ⌧ · (m⇥ @tm) = ⌘ z · J⇥ j
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A useful conceptual example: Kosterlitz-Thouless transition
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vortices bind with antivortices: 
vorticity insulator

(anti)vortices unbind and proliferate: 
vorticity metal (two-component plasma)
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Figure 3. Typical distribution of vortices (red positive numbers) and antivortices (blue negative numbers) on the two sides of the KT-like
transition in a sample with 40 ⇥ 40 sites at E = �2 for (a) W = 1.5t (metallic phase) and (b) W = 3.5t (insulator phase). For clarity, only a
part of the sample is shown.

ln g, and vanishes on average above a critical point (g >

gC ' 1.3) with negligible fluctuations, indicating clearly
that the disorder-driven metal–insulator transition is a KT
transition, as observed in other disordered 2D electron
systems [3–5]. The behavior of the beta function also suggests
that a minimum (critical) conductivity, �c = gC(e2/h)/

p
3 '

0.75(e2/h) (1/
p

3 being the aspect ratio), exists for the bulk
QSH system.

An important characteristic of the traditional KT
transition in the XY model is the binding of vortex–antivortex
pairs in the ordered phase near the transition point and
unbinding in the disordered phase [1, 2]. For 2D electron
systems, Zhang et al [5] proposed to map the local currents
onto the local spins in the XY model. The bond current vector
between sites m and n can be calculated by [5, 30, 31]

im�2!n�1 =
�2e

h̄

Z
dE

2⇡
Re[Hm�2,n�1G

<
n�1,m�2

(E)], (2)

where �1 and �2 represent the spin index and G
<
n�1,m�2

(E) is
the matrix element of the lesser Green’s function. The lesser
Green’s function is given by

G
<(E) = G

r(E)

"

i
X

↵

0↵(E)f↵(E)

#

G
a(E), (3)

where f↵(E) = f0(E+eV↵) is the Fermi distribution function in
lead ↵ with V↵ as the electrical potential in the lead. The local
current vector defined on site n is in =

P
m�2�1

im�2!n�1 [5],
where the vectorial summation is taken over all the nearest
and next nearest neighbors m of site n. Along a closed
path, the polar angle ✓n of in is considered to change
continuously with changing coordinates, and a topological
charge is defined as c =

1
2⇡

H
r✓ · dl, where the path integral

is counterclockwise [5]. A nonzero number of c indicates

the appearance of a vertex (c > 0) or an antivortex (c <

0). Figure 3 shows typical distributions of the topological
charges on the two sides of the metal–insulator transition. The
arrows in the figure indicate only the direction of the local
currents, without showing the magnitude for the purpose of
visualization. In the delocalized phase (figure 3(a)), a few
vortices (c > 0) and antivortices (c < 0) are excited in pairs
and bounded together, corresponding to the ordered phase
at low temperature in the 2D XY model. In the localized
phase (figure 3(b)), a large number of vortices and antivortices
appear and are mostly unbounded, corresponding to the
disordered phase at high temperature.

Finally, we study the effect of breaking the time-reversal
symmetry on the KT phase transition, by including a new
term Eh · E� into Hamiltonian (1), where Eh stands for a uniform
Zeeman field. The calculated conductances at E = �1 and
�2 as functions of sample size M for different disorder
strengths are shown in figures 4(a) and (b) for a vertical
Zeeman field Eh = (0, 0, hz = 0.1) and in figures 4(c) and (d)
for a horizontal field Eh = (hx = 0.1, 0, 0). The parameters
are chosen in such a manner that the system is in the
time-reversal symmetry broken QSH phase in the clean
limit [22, 23]. The conductance shown in figures 4(a)–(d)
displays similar size dependence to that in figure 1. For weak
disorder, the conductance is nearly independent of sample
size, indicating the existence of the critically delocalized
states. For strong disorder, the conductance decreases with
sample size, indicating that the electron states are localized.
It is found that all the data on the insulating side in
figures 4(a)–(d) can also be fitted with a universal scaling
function g = f (M/⇠), as shown in figure 4(e). In figure 4(f),
the beta function (solid line) for the time-reversal symmetry
broken QSH system is obtained in the same way as in figure 2.
As expected, the beta function vanishes above a critical

4



Why magnetic vortices could be interesting?
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• Robust conservation law ⇒ long-ranged transport 

• Intricate relation to winding ⇒ topological energy storage 

• Wealth of insulating room-temperature magnetic materials, particularly 
antiferromagnets



A proposal for magnetic energy storage
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We formulate an energy-storage concept based on the free energy associated with metastable magnetic
configurations. Despite the active magnetic region of the battery being electrically insulating, it can sustain
effective hydrodynamics of spin textures, whose conservation law is governed by topology. To illustrate the
key physics and potential functionality, we focus here on the simplest quasi-one-dimensional case of planar
winding of the magnetic order parameter. The energy is stored in the metastable winding number, which
can be injected electrically by an appropriately tailored spin torque. Because of the nonvolatility and the
endurance of magnetic systems, the injected energy can be stored essentially indefinitely, with the
topological charge cycles that do not degrade over time.

DOI: 10.1103/PhysRevLett.121.127701

Introduction.—The field of spintronics has undergone
much progress over recent years, particularly in regard to
memory, logic, and efficient signal propagation [1].
Especially intriguing are the magnetic systems based on
electrical insulators [2]. Their order-parameter configu-
rations may not only naturally possess metastability and
thus memory capabilities (as in the domain-wall [3] and
Skyrmion [4] racetracks), but can also transmit informa-
tion via their collective dynamics [5,6]. A particularly
robust mode of such transport utilizes topological mag-
netic textures, such as winding in a quasi-one-dimensional
easy-plane (ferro- or antiferro-)magnet [7], Skyrmion
textures in quasi-two-dimensional magnets [8], or the
winding of three-dimensional spin-glass textures [9]. The
associated topological “charge,” such as the winding angle
or the Skyrmion number, is a conserved quantity, whose
density obeys a continuity equation and can thus exhibit
hydrodynamic behavior. In the easy-plane example, in
particular, this hydrodynamics maps onto the problem of a
neutral superfluid [2,5,10–12]. Importantly, the under-
lying conservation law is rooted in topology of the order-
parameter configuration rather than a symmetry of the
associated Lagrangian. Contrary to the more traditional
conservation laws, we rely here on the structure of the
order-parameter configurations rather than the detailed
dynamics. A sizable energy barrier is in practice needed,
however, to protect against dissipative processes that
can relax the order-parameter texture towards the trivial
ground state [7,8,13].
In this Letter, we show how these dynamic topological

spin textures can be exploited for energy storage. A key
study case will be provided by metastable spin helices
in easy-plane electrically insulating magnetic materials.

While it has been long known that such textures can
store free energy over long times [2,14], no efficient
means for its loading and extraction have been suggested.
We propose, to this end, to utilize boundary spin torques
produced by adjacent metallic wires [5]. The injected
magnetic energy can persist over a long time, in the
absence of a load, and can eventually be released to
produce useful work in a spintronic circuit by spin-motive
forces reciprocal to the spin torque [15–17]. We address
several specific realizations of this idea, based on the
winding textures in easy-plane materials, Skyrmionic
magnetic configurations, or spin glasses. We discuss
the energy conversion and losses during the battery
charging and discharging, stability of the (metastable)
storage, and the ultimate upper bound for the achievable
energy density in magnetic systems. While, at present, it
appears challenging to compete with the traditional
lithium-ion technology in terms of the energy density,
our proposal already has a clear advantage specifically
for spintronic circuits, where the topological spin-texture
energy storage can be naturally integrated with the
nonvolatile logic and memory functionalities [6,18].
Prototypical example.—Figure 1 shows a simplified

geometry, which (while not necessarily optimized for a
useful device) can be implemented based on existing
heterostructures exhibiting spin superfluidity [19]. The
active spin region forms a loop of length L, with the
directional order parameter (either of magnetic or Néel
type, for example) constrained to precess within the easy
(yz) plane. The spins are injected and ejected at the ends of
the magnetic wire (i.e., x ¼ 0, L), where metallic wires
can sustain a steady spin torque τ on the order parameter
due to the spin Hall effect [20]. The geometry is such that
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the injected spin current supplied by the left metallic wire
(at x ¼ 0) is polarized along the x axis in spin space.
The applied spin current at x ¼ L, on the other hand, is
polarized in the opposite direction.
In the circuit sketched in Fig. 1, a spin-current flow is,

therefore, mediated by the insulating magnetic wire
between two metal contacts deposited on top at the two
ends. A key requirement is to be able to interrupt this
spin current, on demand, in the short region under the top
electrostatic gate. This can be achieved by appropriately
gating it by the voltage Vg, which controls magnetic
properties of the magnetic section underneath. When the
electric current I is applied to the device (say, during the
battery-loading stage), the gate voltage Vg needs to be set to
the value that suppresses the local spin current underneath
(e.g., by reducing the easy-plane anisotropy that is needed
to maintain the spin superflow, as discussed below). This
can be accomplished according to the effect of the voltage-
controlled magnetic anisotropy [21]. When the device is off
(in the energy-storage mode), the uniform magnetic proper-
ties are restored along the loop, closing a persistent spin
superflow, which can then maintain a metastable spin-
carrying state over a long time. The battery releases the
stored free energy by exerting a spin-motive force on an
external circuit [17], which is reciprocal to the spin torque
that was used to load the battery. For this, we again need to
disrupt the persistent superflow by the gate Vg.
Alternatively to the electrostatic gating, local magnetic

properties can be controlled by elastic strain [22] or by
applying a heat flux to the blue region, which can allow one
to tune magnetic properties across the magnetic phase
transition. The superflow at x ¼ 0−, Lþ would certainly be

quenched, e.g., on the disordered, paramagnetic side of the
transition. The variety of the available means to control
local magnetic properties makes for versatile battery
designs, which may even be integrated or directly endowed
with a logic functionality.
Model.—Assuming rotational symmetry of the magnetic

system around the x axis (in spin space), the x projection of
the (nonequilibrium) spin density ρsðx; tÞ obeys the con-
tinuity equation [23]

∂tρs þ ∂xIs ¼ −ρs=τα: ð1Þ

Expressing the collective spin current [24],

Is ¼ −A∂xφ; ð2Þ

in terms of the magnetic orientation φ within the easy plane
(see Fig. 1) is reminiscent of the mass flow in a neutral
superfluid. These relations follow from the (phenomeno-
logical) magnetic free-energy density (per unit length)

Fðρs; ∂xφÞ ¼ ρ2s=2χ þ Að∂xφÞ2=2; ð3Þ

parametrized by the spin susceptibility (along the sym-
metry axis x) χ and the exchange stiffness A. Note that we
are constructing here a quasi-one-dimensional descrip-
tion, so that the spin density ρs, the susceptibility χ, and
the exchange stiffness A are obtained by multiplying their
bulk values by the magnetic wire’s cross section.
ρs, being the generator of the spin order-parameter

rotations, is canonically conjugate to φ [10],

fφðxÞ; ρsðx0Þg ¼ δðx − x0Þ; ð4Þ

where the left-hand side stands for the Poisson bracket. The
corresponding Hamilton equations lead to the continuity
equation (1), once we have supplemented the theory also
with the dissipation according to the Rayleigh dissipation
function density R ¼ αsð∂tφÞ2=2 [25]. α is a dimensionless
Gilbert damping parameter and s is a convenient normali-
zation constant in units of spin density. (Typically, we choose
s to be the full saturation spin density of the underlying
spin system.) The spin-relaxation rate on the right-hand
side of Eq. (1) is accordingly obtained to be τ−1α ¼ αs=χ.
The conjugate Hamilton equation is analogous to a local
Josephson relation

∂tφ ¼ ρs=χ: ð5Þ

The boundary conditions at the metal contacts are con-
structed according to the spin Hall torque [26]

−A∂xφ ¼ τ ¼∓ g∂tφþ ϑI; ð6Þ

at x ¼ 0; L. Here, g≡ ðℏ=4πÞg↑↓, in terms of the interfacial
spin-mixing conductance g↑↓, and ϑ≡ ðℏ=2eÞðSc=SwÞ
tan θSH, in terms of the effective (dimensionless) spin Hall
angle θSH of the interface. Sc is the spin Hall contact area

FIG. 1. A schematic of a quasi-one-dimensional spin spiral of
length L that stores energy density ∝ ð∂xφÞ2, where φ is the
order-parameter angle within the magnetic easy plane. The
winding density ρ≡ −∂xφ of the easy-(yz)-plane directional
order parameter is associated with a collective metastable spin
current Is flowing along the loop. This spin current is loaded by
applying a spin torque τ at the ends of the loop, utilizing the spin
Hall effect in metallic wires (red) deposited on top. Externally
applied electrical current I is thus used to load energy into the
battery. This energy is eventually released by exerting a reciprocal
spin-motive force onto an external spintronic circuit. The blue
gate controls magnetic properties underneath it, allowing one to
locally interrupt the collective spin current on demand, by turning
the gate voltage Vg on or off.
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We formulate an energy-storage concept based on the topological spin textures in magnetic insu-
lators. These textures, such as vortices, are metastable states associated with free energy [1]. Here
we propose to store energy in the topological texture of an XY ferromagnetic or antiferromagnetic
annulus with easy plane anisotropy. Injecting vortices into the system will establish a net wind-
ing texture (energy density) within the bulk as vortices pass through the magnetic system. Once
we complete the charging process, we can turn o↵ the vortex conductivity and thus the energy
associated with the winding texture is stored.

I. INTRODUCTION

Here we propose an energy storage method based on topological spin textures (vortices) in an XY ferromagnet or
antiferromagnet with easy plane anisotropy. In superfluidity, we know that vortices are harmful for the superfluid
flow since the superfluidity can be reduced by creating a vortex inside the bulk and moving it across the boundary.
However, thinking in the reverse way, vortices can help us to establish the superfluid if there is no superfluid to begin
with. By creating vortices on one side of the system and moving vortices across the whole system and removing it
from another side, we can establish finite supercurrent (phase winding) inside the bulk.

Magnetized metal contacts with electric currents are needed to inject vortices into the magnet [2]. A winding texture
is established in the easy plane magnet by moving vortices through the system [see Fig. (1)]. Once these winding
textures are established, we turn o↵ the conductivity of vortices (meaning vortices are gapped). This corresponds to
the stable superfluid phase. Thus the energy associated with this winding texture does not degrade over time, and
may be stored indefinitely. To extract the energy back out of the magnet, we simply allow the process to flow in
reverse. We turn the vortex conductivity back on, allow the vortices to flow back through the magnet while unwinding
the texture, and as the vortices annihilate at the inner edge of the annulus an electric current is induced which is how
energy may be extracted back out of the system.

II. MODEL AND SETUP

The easy plane magnetic insulator Hamiltonian is:

FIG. 1: A illustration of how the winding texture in the magnetic insulator is established when vortices pass through it. The
two pink annuluses represent two magnetized metal contacts with currents flowing in the opposite directions. The green annulus
is the easy plane magnetic insulator where the winding texture will be established and thus energy will be stored.
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Quantum hydrodynamics of vorticity

YT and Zou, PRR (2019)
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2

QUANTUM VORTICITY DYNAMICS

To construct a simple quantum theory, which repro-
duces the above classical hydrodynamics of vorticity in
the classical limit of ~ ! 0, let us consider a square lat-
tice model sketched in Fig. 1. We label each vertex of
the lattice by two integer indices: ı (along the x axis)
and | (along the y axis). The same indices are used to
label the square plaquettes, according to their lower left
corner, as well as the vertical links going upward and
the horizontal links to the right of the site ı|. Each site
contains a quantum spin S = (Sx

, S
y
, S

z), of magnitude
S, described by the standard angular-momentum algebra
[Sa

, S
b] = i~✏abc

S
c.
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FIG. 1. The quantum spin lattice described by an arbitrary
Hamiltonian H. Sı| is the spin operator at site ı|, with index
ı (|) running along the x (y) axis. ı̃ = ı+1 and |̃ = |+1. ⇢ı|
is the conserved topological charge per plaquette ı|, jxı| (j

y
ı|) is

the flux per vertical (horizontal) link ı|, which together satisfy
the quantum continuity equation (11).

We associate a charge density

⇢ı| ⌘
A

x
ı| � A

x
ı|̃ + A

y
ı̃| � A

y
ı|

2⇡a
(6)

to each plaquette, where a is the lattice spacing. Here,
ı̃ ⌘ ı + 1 and |̃ ⌘ | + 1, and

A
x
ı| =

z · (Sı̃| + Sı|) ⇥ (Sı̃| � Sı|)

2aS2
=

z · Sı| ⇥ Sı̃|

2aS2
+ H.c. ,

A
y
ı| =

z · (Sı|̃ + Sı|) ⇥ (Sı|̃ � Sı|)

2aS2
=

z · Sı| ⇥ Sı|̃

2aS2
+ H.c. ,

(7)
which we assign formally to the corresponding horizontal
and vertical sides of the plaquette, respectively. These
definitions mimic Eqs. (2) and (3), respectively, and
should reproduce them by coarse graining the magnetic
textures in the classical limit of S ! 1.

According to these definitions,

⇢ı| =
z · (Sı̃| � Sı|̃) ⇥ (Sı̃|̃ � Sı|)

2⇡(aS)2
. (8)

We also see [according to Eq. (6)] that

Q =
X

ı|

⇢ı| (9)

vanishes in the bulk and reduces to the boundary terms,
which we can interpret as the quantum version of the
vorticity (4). This suggests a conservation law with the
boundary fluxes corresponding to the vorticity flow. In-
deed, according to the Heisenberg equation of motion (for
Hamiltonian H),

@t⇢ı| =
i

~ [H, ⇢ı|] (10)

can be seen to satisfy the continuity equation:

@t⇢ı| +
j

x
ı̃| � j

x
ı| + j

y
ı|̃ � j

y
ı|

a
= 0 . (11)

Here, the fluxes are obtained by discretizing and quan-
tizing the definition (1):

j
x
ı| =

z · (Sı|̃ � Sı|) ⇥ @t(Sı|̃ + Sı|)

4⇡aS2
+ H.c. , (12)

and similarly for the other components. The time deriva-
tive should always be understood to denote the Heisen-
berg commutator:

@tO ⌘
i

~ [H,O] , (13)

for any (time-independent) operator O.
It is useful to emphasize that this conservation law is

not rooted in any specific symmetry of the system. In-
deed, the form of the Hamiltonian H still remains arbi-
trary. The continuity is rather dictated by the topology
associated with the vorticity (hydro)dynamics in the in-
terior of the system. Specifically, for a fixed texture on
the boundary, an arbitrary smooth field in the bulk yields
the same net vorticity, irrespective of the details of the
dynamics.

While the definitions (7) for the quantum field A(S)
are motivated by the classical limit (3), which describes
vorticity, any field A(S) entering Eq. (6) would in princi-
ple define a conserved dynamics. This is fully analogous
to the arbitrary gauge field A(m) parametrizing classi-
cal hydrodynamics associated with Eqs. (2) and (5), as
discussed above. The specific choice (7) is motivated by
the classical correspondence to a physically meaningful
extensive hydrodynamics in easy-plane systems.

Boundary conditions

Let us start by constructing the boundary conditions
for injection and ejection of the vorticity in the classi-
cal limit. To this end, we follow Ref. [1] and consider

2

QUANTUM VORTICITY DYNAMICS

To construct a simple quantum theory, which repro-
duces the above classical hydrodynamics of vorticity in
the classical limit of ~ ! 0, let us consider a square lat-
tice model sketched in Fig. 1. We label each vertex of
the lattice by two integer indices: ı (along the x axis)
and | (along the y axis). The same indices are used to
label the square plaquettes, according to their lower left
corner, as well as the vertical links going upward and
the horizontal links to the right of the site ı|. Each site
contains a quantum spin S = (Sx

, S
y
, S

z), of magnitude
S, described by the standard angular-momentum algebra
[Sa

, S
b] = i~✏abc

S
c.
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FIG. 1. The quantum spin lattice described by an arbitrary
Hamiltonian H. Sı| is the spin operator at site ı|, with index
ı (|) running along the x (y) axis. ı̃ = ı+1 and |̃ = |+1. ⇢ı|
is the conserved topological charge per plaquette ı|, jxı| (j

y
ı|) is

the flux per vertical (horizontal) link ı|, which together satisfy
the quantum continuity equation (11).
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to each plaquette, where a is the lattice spacing. Here,
ı̃ ⌘ ı + 1 and |̃ ⌘ | + 1, and
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(7)
which we assign formally to the corresponding horizontal
and vertical sides of the plaquette, respectively. These
definitions mimic Eqs. (2) and (3), respectively, and
should reproduce them by coarse graining the magnetic
textures in the classical limit of S ! 1.

According to these definitions,

⇢ı| =
z · (Sı̃| � Sı|̃) ⇥ (Sı̃|̃ � Sı|)

2⇡(aS)2
. (8)

We also see [according to Eq. (6)] that

Q =
X

ı|

⇢ı| (9)

vanishes in the bulk and reduces to the boundary terms,
which we can interpret as the quantum version of the
vorticity (4). This suggests a conservation law with the
boundary fluxes corresponding to the vorticity flow. In-
deed, according to the Heisenberg equation of motion (for
Hamiltonian H),
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can be seen to satisfy the continuity equation:
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Here, the fluxes are obtained by discretizing and quan-
tizing the definition (1):
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and similarly for the other components. The time deriva-
tive should always be understood to denote the Heisen-
berg commutator:

@tO ⌘
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~ [H,O] , (13)

for any (time-independent) operator O.
It is useful to emphasize that this conservation law is

not rooted in any specific symmetry of the system. In-
deed, the form of the Hamiltonian H still remains arbi-
trary. The continuity is rather dictated by the topology
associated with the vorticity (hydro)dynamics in the in-
terior of the system. Specifically, for a fixed texture on
the boundary, an arbitrary smooth field in the bulk yields
the same net vorticity, irrespective of the details of the
dynamics.

While the definitions (7) for the quantum field A(S)
are motivated by the classical limit (3), which describes
vorticity, any field A(S) entering Eq. (6) would in princi-
ple define a conserved dynamics. This is fully analogous
to the arbitrary gauge field A(m) parametrizing classi-
cal hydrodynamics associated with Eqs. (2) and (5), as
discussed above. The specific choice (7) is motivated by
the classical correspondence to a physically meaningful
extensive hydrodynamics in easy-plane systems.

Boundary conditions

Let us start by constructing the boundary conditions
for injection and ejection of the vorticity in the classi-
cal limit. To this end, we follow Ref. [1] and consider

- vorticity per plaquette:
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the classical limit of ~ ! 0, let us consider a square lat-
tice model sketched in Fig. 1. We label each vertex of
the lattice by two integer indices: ı (along the x axis)
and | (along the y axis). The same indices are used to
label the square plaquettes, according to their lower left
corner, as well as the vertical links going upward and
the horizontal links to the right of the site ı|. Each site
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y
ı|) is

the flux per vertical (horizontal) link ı|, which together satisfy
the quantum continuity equation (11).
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which we assign formally to the corresponding horizontal
and vertical sides of the plaquette, respectively. These
definitions mimic Eqs. (2) and (3), respectively, and
should reproduce them by coarse graining the magnetic
textures in the classical limit of S ! 1.

According to these definitions,

⇢ı| =
z · (Sı̃| � Sı|̃) ⇥ (Sı̃|̃ � Sı|)

2⇡(aS)2
. (8)

We also see [according to Eq. (6)] that

Q =
X
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⇢ı| (9)

vanishes in the bulk and reduces to the boundary terms,
which we can interpret as the quantum version of the
vorticity (4). This suggests a conservation law with the
boundary fluxes corresponding to the vorticity flow. In-
deed, according to the Heisenberg equation of motion (for
Hamiltonian H),
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can be seen to satisfy the continuity equation:
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Here, the fluxes are obtained by discretizing and quan-
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and similarly for the other components. The time deriva-
tive should always be understood to denote the Heisen-
berg commutator:
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~ [H,O] , (13)

for any (time-independent) operator O.
It is useful to emphasize that this conservation law is

not rooted in any specific symmetry of the system. In-
deed, the form of the Hamiltonian H still remains arbi-
trary. The continuity is rather dictated by the topology
associated with the vorticity (hydro)dynamics in the in-
terior of the system. Specifically, for a fixed texture on
the boundary, an arbitrary smooth field in the bulk yields
the same net vorticity, irrespective of the details of the
dynamics.

While the definitions (7) for the quantum field A(S)
are motivated by the classical limit (3), which describes
vorticity, any field A(S) entering Eq. (6) would in princi-
ple define a conserved dynamics. This is fully analogous
to the arbitrary gauge field A(m) parametrizing classi-
cal hydrodynamics associated with Eqs. (2) and (5), as
discussed above. The specific choice (7) is motivated by
the classical correspondence to a physically meaningful
extensive hydrodynamics in easy-plane systems.

Boundary conditions

Let us start by constructing the boundary conditions
for injection and ejection of the vorticity in the classi-
cal limit. To this end, we follow Ref. [1] and consider

- flux per link:

• Experimental (transport) signatures of the quantum statistics of vortices? 

• A direct transport probe of the superfluidity of vorticity?



Some take-home messages
Hydrodynamic properties of vorticity in magnets and superfluids may yield 
robust long-ranged signal flows

Magneto-(thermo)-electric tools allow us to access this versatile physics 
utilizing (interfacial) spin torques

Thank you!

Our practical outlook is towards insulator-
based integrated circuits, where smooth 
topological textures and topological 
solitons engender both active device 
elements, transport interconnects, as well 
as energy storage


