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Characterized by winding number

• Theoretical predictions 

• first experimental observation in 2009 in form of a skyrmion lattice in MnSi

Mühlbauer et al., 
Science (2009)

Bogdanov and Yablonskii, Sov. Phys. JETP 1989

• occur in magnetic systems with competing (twisting) interactions 

• particle like character

KES et al.,  
Nature Electronics (2018)

Thanks to Marco Armbruster

• can be created, manipulated and  
destroyed by various means

• for recent review see
KES, et al., JAP 124, (2018), 

featured article
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1) small and above room temperature

2) topology → stability

Jonietz, KES, et. al., 
Science, (2010)

In skyrmion lattice:

3) react to ultra-low electric currents

4) Interesting dynamics because of Magnus force!

KES, M. Sitte, JAP (2014)

skyrmion Hall effect

5) potential for spintronics applications  
    
          Device relevant systems
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What is a device that optimally uses the properties of a skyrmion?

DW      1d skyrmion       2d

Skyrmion based devices ???
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originally: artificial neural network with

feed forward 
only

recursive  
neural network

Goal: map a complex problem 
to a linearly solvable one

• Network does not need tuning: 
internal connections are fixed 

• Only output connections are trained 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• Multiple output arrays possible to search 

for different features simultaneously  
• No detailed knowledge about reservoir required

Recognition and classification of  
spatial-temporal events like 
• speech recognition 
• sensor fusion type applications

Useful for: 
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originally: artificial neural network with Goal: map a complex problem 
to a linearly solvable one

Pinna, et al., KES, arXiv1811.12623 

Non-linear, complex system  
with short term memory

Mass, et al., Neural Comput. (2002)

Pattern 
recognition 

with 
matter!

Duport, et al., Sci. Rep. (2016)

Fernando, et al., Adv. Artificial Life (2005)

Torrejon, 
et al., Nature (2017)
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George Bourianoff

“skyrmion fabrics” as reservoir

Using skyrmions for reservoir computing
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First steps towards: skyrmions for reservoir computing

Bourianoff, Pinna, Sitte, KES, AIP Advances, (2018)
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First steps towards: skyrmions for reservoir computing

Bourianoff, Pinna, Sitte, KES, AIP Advances, (2018)current flow based on AMR
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Skyrmions must not displace significantly 
for the reservoir to work properly

Pinna, et al., KES, arXiv1811.12623 

Daniele Pinna

Skyrmion Reservoir



24Spintronics Meets Topology in Quantum Materials — KITP — Karin Everschor-Sitte

Skyrmions must not displace significantly 
for the reservoir to work properly

Pinna, et al., KES, arXiv1811.12623 

Simulations: model pinning through grains

Daniele Pinna

Skyrmion Reservoir



24Spintronics Meets Topology in Quantum Materials — KITP — Karin Everschor-Sitte

Skyrmions must not displace significantly 
for the reservoir to work properly

Pinna, et al., KES, arXiv1811.12623 

Simulations: model pinning through grains

Daniele Pinna

Texture topology has been shown  
to not change significantly due to  
thermal and current-driven excitations

Skyrmion Reservoir



25Spintronics Meets Topology in Quantum Materials — KITP — Karin Everschor-Sitte

Pinna, et al., KES, arXiv1811.12623 

1GHz

Sin wave Square signal

Skyrmion Reservoir



26Spintronics Meets Topology in Quantum Materials — KITP — Karin Everschor-Sitte

Pinna, et al., KES, arXiv1811.12623 

1GHz

Skyrmion Reservoir

Sin wave Square signal



27Spintronics Meets Topology in Quantum Materials — KITP — Karin Everschor-Sitte

Pinna, et al., KES, arXiv1811.12623 

1GHz

-> simple pattern recognition

Skyrmion Reservoir
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Exploiting the complex magnetic structure, no time tracing needed!

Pinna, et al., KES, arXiv1811.12623 
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Exploiting the complex magnetic structure, no time tracing needed!

Pinna, et al., KES, arXiv1811.12623 
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Summary: RC with Skyrmion Fabrics

Non-linear, complex system  
with short term memory

Prychynenko, et al., KES, Phys. Rev. Appl. (2018) 
Bourianoff, et al., KES, AIP Advances, (2018) Pinna, et al., KES, arXiv1811.12623 

Potential advantages of Skyrmion Reservoir:
• small (~nm) 
• low energy consumption (~      ) 
• complexity / many degrees of freedom

consumption of atomic switch networks and skyrmion fabrics shows that skyrmion systems require

about two orders of magnitude lower power. Standard voltages used for atomic switch networks

are of the order of 1V and resistances are about 10 k⌦9,12,13 leading to a power of P ⇡ 100 µW.

Whereas for our skyrmion system we obtain powers of the order of P ⇡ 1 µW. In general,

skyrmion systems interacting with currents and magnons have many internal degrees of freedom.

This complexity results in reservoirs with high tunability and functionality much larger than for

memristors and atomic switch networks. As shown in Fig. 8, a skyrmions tend to cluster into

ensembles of various sizes where each cluster is surrounded by a domain wall. The details of the

clustering depend on the competing micromagnetic interaction strengths, therefore it also should

be very sensitive to small bias fields. However, this analysis goes beyond the scope of this work.

The present approach is similar to the resistive switch network but promises to have advantages

regarding size, energy efficiency, complexity and adaptivity as summarized in the following:

1. Energy efficiency: The power requirements are potentially low due to an efficient coupling

between skyrmions and currents.

2. Size: The size of reservoir elements is relatively small. Assuming an average skyrmion

diameter of about 10 nm, a million-element reservoir measures about 10 µm⇥ 10 µm.

3. Complexity: Skyrmion interactions with currents and magnons yield more internal degrees

of freedom than a simple scalar resistivity associated with memristors and atomic switch

networks.

4. Adaptivity: High tuneability and adjustability of the network topology based on competing

micromagnetic forces.

5. Homeostatic operation: The system dynamics will be sensitive to thermal effects or bias

fields applied uniformly to the reservoir. These can, in principle, be used to maintain home-

ostatic operating points.

VI. SUMMARY AND CONCLUSIONS

In this work we have proposed skyrmion systems for reservoir computing. To start with, we

have shown a non-linear current-voltage characteristics for an isolated skyrmion pinned in a ferro-

magnetic strip based on the AMR effect. However, the particular type of magnetoresitive effect is

15

Simple pattern recognition by  
a single measurement
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Resistances across multiple input and output contacts  
capture more information about the fabric’s response

Outlook:

“Finding optimal settings for magnetic texture” 

Simple pattern recognition by  
a single measurement
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Depending on the application not always a high precision is needed
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Stochastic Computing - Motivation 

You win, if red dice is a 6 and blue one shows an even number.

p=1/2

p=1/6

probability of winning: p = 1/6 * 1/2 = 1/12

Theory
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law of large numbers:  
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• Thermal skyrmion diffusion and skyrmion reshuffler for stochastic computing
Zázvorka, …, KES, et al., Kläui, Nature Nanotechnology 2019
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J. Zázvorka, F. Jakobs, D. Heinze,  
N. Keil, S. Kromina, S. Jaiswal,  
K. Litzius, G. Jakob, P. Virnau, D. Pinna,  
A. Donges, U. Nowak, M. Kläui

Thanks to

Pinna, et al., Phys. Rev. Appl. (2018)

Structure of the talk 

• Skyrmions for reservoir computing

Prychynenko, et al., KES, Phys. Rev. Appl. (2018) 

Bourianoff, et al., KES, AIP Advances, (2018) 

Pinna, et al., KES, arXiv1811.12623 

• Data analysis, new tools for “microscopy”?

Horenko, et al., KES, arXiv1907.04601 
Illia Horenko Davi Rodrigues Terence O’Kane
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