Magnon heat conduction and spin-Seebeck effect in helimagnetic Cu₂OSeO₃

J. L. Cohn

Department of Physics University of Miami Miami, FL

Collaborators

B. Trump, G. Marcus, T. L. McQueen, Departments of Chemistry & Physics Johns Hopkins University, Baltimore

S. Huang Department of Physics University of Miami

UNIVERSITY

OF MIAMI

U.S. DOE, Off. of Sci., Off. of BES, Award No. DE-SC0008607

Cohn Lab

Postdocs

Artem Akopyan Narayan PrasaiAlwyn Rebello2019-2015-182013-14

Graduate Students

SaeedArtemMoshfeghyeganehAkopyan2013-20182014-2019

UNIVERSITY

OF MIAMI

Dharmendra Shukla 2015-

Undergraduates

Christine Chesley 2013-14

Alexandra Cote 2014-15

Cu₂OSeO₃: Spin structure and phases

Cubic, noncentrosymmetric P2₁3, a=8.925 Å (8 f.u.)

Weak antisymmetric exchange (D-M) interactions cause longrange canting of spins $T_{C} \approx 58K$

J. Romhányi et al., PRB 90, 140404(R) (2014)

fcc lattice of Cu₄ tetrahedra (S=1) ("3 up-1 down")

Cu₂OSeO₃: Spin structure and phases

Steady-state measurements, low-T

Single-crystal Cu₂OSeO₃ growth by vapor transport method (Johns Hopkins)

Typical specimen size: 0.2×0.2×3.5 mm³

 $\ell_0 = 2\sqrt{A/\pi} = 0.15 - 0.60mm$

³He "dipper" probe with 5-T magnet

Steady-state measurements, low-T

Cu₂OSeO₃: κ(T) (zero applied field)

 $\kappa(8K) \approx 300-350 \text{ W/mK}$ High quality of lattice

 $\kappa \cong \kappa_L + \kappa_m$

Prasai et al., Phys. Rev. B 95, 224407 (2017)

magnon contribution

Sanders and D. Walton, Phys. Rev. B 15, 1489 (1977)

Separating κ_{m} and κ_{L}

Separating κ_{m} and κ_{L}

Prasai et al., Phys. Rev. B 95, 224407 (2017)

Boundary-limited magnon scattering

For
$$\ell_m = const.$$
, $\kappa_m \propto T^2 \int_0^\infty \frac{x^3 e^x}{(e^x - 1)^2} dx$

Separating κ_{m} and κ_{L}

Prasai et al., Phys. Rev. B 95, 224407 (2017)

Estimating κ_m, T>2K

Estimating κ_m, T>2K

Callaway model fitting, constrained by low-T, hi-T data, max. in κ_m at T=5-6 K.

$$\kappa_L = \frac{k_B}{2\pi^2 v} \left(\frac{k_B}{\hbar}\right)^3 T^3 \int_0^{\Theta_D/T} \frac{x^4 e^x}{\left(e^x - 1\right)^2} \tau(x, T) dx,$$

Magnon thermal conductivity

the record for a ferro- or ferrimagnet...

Novel spin phases, *H* || [100]

- Tilted conical (TC)
- Low-T skyrmion (LTS)

small-angle neutron scattering

A. Chacon *et al.*, Nat. Phys.**14**, 936 (2018) F. Qian *et al.*, Sci. Adv. **4**, 7323 (2018)

Prasai et al., Phys. Rev. B 99, 020403 (R) (2019)

Spin Seebeck Effect at T< 20 K

Pt film deposition and properties

 $10^3 \times \Delta R/R$

Spin Seebeck Effect at T< 20 K

S_{LSSE} , κ_m Field dependence

 κ_m , S_{LSSE} : close correspondence

C-FP transition:

• Sharp decrease in magnitude T=2.00, 3.03 K (larger spin gap in FP phase, $\Delta \approx 0.2 \ meV$)

S_{LSSE} , κ_m Field dependence

 κ_m , S_{LSSE} : close correspondence

C-FP transition:

- Sharp decrease in magnitude T=2.00, 3.03 K (larger spin gap in FP phase, $\Delta \approx 0.2 \text{ meV}$)
- Decrease appears at higher T for S_{LSSE}

Subthermal magnon role in spin-Seebeck effect

Portnichenko et al., Nature Commun. 10, 10725 (2016)

S_{LSSE} , κ_m T dependence

κ_m -- scattering rate (τ_R^{-1})

Forney and Jäckle, Phys. kondens. Materie **16**, 147 (1973)

(EuS, T_C=16.5 K)

magnon-magnon Umklapp $\tau_{3U}^{-1}, \tau_{4U}^{-1}$ magnon-impurity (non-mag.) τ_i^{-1}

magnon-boundary

$$\tau_b^{-1} = \langle v_m \rangle / \ell_m \quad (\ell_m \le \ell_0)$$

$$\tau_R^{-1} = \tau_{4U}^{-1} + \tau_i^{-1} + \tau_b^{-1}$$

 $\tau_{mp}^{-1} \simeq 2 \times 10^5 T^{3/2}$ [estimated from FMR linewidth, PRB 93, 235131 (2016)] A. I. Akhiezer, V. G. Bar'yakhtar, M. I. Kaganov, Soviet Phys. Uspekhi 3, 661 (1961) F. Schwabl and K. H. Michel, PRB 2, 189 (1970)

S_{LSSE} , κ_m T dependence

 $\ell_0 = 0.47mm$

 $(\tau_R^{-1} = \tau_{4U}^{-1} + \tau_i^{-1} + \tau_b^{-1})$

S_{LSSE} , κ_m T dependence

 $\ell_0 = 0.47mm$

 S_{LSSE} , κ_m T dependence S_{LSSE} (µV/K), K_m (W/mK) $\ell_0 = 0.60 mm$ Better fits with $\tau_{th} \propto \tau_R$ $\ell_0 = 0.31 \, mm$

S_{LSSE}, κ_m integrals

Re-scaled S _{LSSE}					30	 0.60 mm 0.47 mm 0.31 mm 	т <u>-</u> Т	
0.970 0.968 ~_ 0.966 0.964					20 10 0		40 κ _m (W/mK)	60 80
0.962	0.9 1.0	i.1 1.2 1.3 n	1.4 1.5		09 09			
Specimen ℓ_0 (mm) c (ppm) ℓ_m (mm) R_N (Ω) $g_{eff}^{\uparrow\downarrow}(10^{15} \text{m}^{-2})$					S _{LSSE}) ^{1.15} (μV/h			
crystal 1 " crystal 2	$\begin{array}{ccc} 0.60 & 22 \\ 0.47 & 22 \\ 0.31 & 44 \end{array}$	2 0.30 2 0.21 4 0.19	467 120 293	0.41 6.50 0.21	Đ Đ		40	60 80

κ_m(W/mK)

S_{LSSE}, κ_m integrals

If $\tau_{th} \propto \tau_R$,

$$B_{ij} = \int_{0}^{1} dq q^{2} v_{m}^{2} \frac{x(c)}{(e^{x} - 1)^{2}}$$
$$C_{k} = \int_{0}^{1} dq q^{2} \frac{x^{k}}{e^{x} - 1}$$

 r^1

 $S_{LSSE} \propto \frac{B_{11}C_2}{(B_{10}C_1)^{1/2}}$

Summary

- Cu₂OSeO₃: record magnon thermal conductivity (for ferro- ferri-magnets)
- Ballistic phonon and magnon transport at T<2K
- Large spin-Seebeck effect tests of bulk theory