The Implication of F-theory GUTs for LHC

Jing Shao Syracuse University

arXiv:1001.4084, w/ J. Heckman and C. Vafa arXiv:0903.3609, w/ J. Heckman, G. Kane and C. Vafa

SVP meeting, KITP May 2010

STRING PHENO @ THE LHC AGE

The more phenomenological approach:

New Physics Scenario + Ingredient from string compactification + Pheno. Constraints is already stringent

* Focusing on models which could be seen and tested in near future

Focus on the F-theory GUT model

[C. Beasley, J. Heckman and C. Vafa] and many others: V. Bouchard, S. Cecotti, M. Cheng, J. Conlon, J. Marsano, F. Quevedo, N. Saulina, S. Schafer-Nameki, J. Seo, A. Tavanfar, T. Watari, M. Wijnholt

Plan of my talk

What are the ingredients for F-GUT

* SUSY breaking and $U(1)_{PQ}$ deformation

LHC signals and searching strategy

- * Focusing on the UV motivated gauge theories -- Local models gravity can be decoupled $M_{GUT}/M_{pl} \sim 10^{-3}$
- Requiring GUT and decoupling limit severely restrict the model

F-THEORY INGREDIENTS FOR MODEL BUILDING

* Gauge fields> ADE Singularity $S^4 \times C^2 / \Gamma_{ADE}$		Total dim	Internal dim
Matter fields> Curve with enhanced symmetry	Gravity	10	6
With a Yukawa> Point with enhanced symmetry	Gauge	8	4
$\overline{5} \times \overline{5} \times 10$ $SU(6)$ $SU(6)$	Matter	6	2
		4	0
H_d D			
SO(12)			

E8 POINT UNIFICATION

* E8 breaking pattern $E_8 \supset SU(5)_{GUT} \times SU(5)_{\perp}$

broken by U(1) flux to $SU(3) \times SU(2) \times U(1)$

broken to U(1)s by geometry

E8 POINT UNIFICATION

- - * Extra matter $10 \oplus \overline{10}$
 - Only one U(1) survive, PQ charge fixed

	$\overline{5}_M$	10_M	5_H	$\overline{5}_H$	X^{\dagger}	N_R
Majorana $U(1)_{PQ}$	+2	+1	-2	-3	+5	0

Dirac Neutrino Scenario

* Two U(1)'s : $U(1)_{PQ}$ $U(1)_{\chi}$

MINIMAL E8 MODEL

SUSY AND MEDIATION

- * Extra GUT multiplet + Singlet ----> Gauge mediation is natural in F-GUTs.
- Basic Picture

$$\begin{array}{c} \mathbf{Y},\mathbf{Y}'\\ \hline \\ \mathbf{SSM}\\ \hline \\ \mathcal{L}\sim\int d^2\theta XYY'\\ \hline \\ \langle X\rangle=M+\theta^2F\\ \end{array}$$

* In almost all cases, messengers are in $10 \oplus \overline{10}$

$\mu/B\mu$ problem

- * EWSB in MSSM $B, \mu \sim M_{EW}$
- * In F-GUTs, PQ charge of X forbid $\int d^2\theta X H_u H_d$
- * D-term contribution to μ term $\int d^4\theta \frac{X^{\dagger} H_u H_d}{M_X} \text{(from integrating out KK modes of X)}$ $\implies \mu \sim \frac{\bar{F}}{M_X}, \quad \text{require } \mu \sim 10^2 \text{GeV} \Longrightarrow \overline{F \sim 10^{17} \text{GeV}^2}$ * B μ term:

Dµ term.

.....

M. Ibe and R. Kitano, JHEP 0708:016,2007 J. Marsano, N.Saulina S. Schafer-Nameki, J. Heckman and Vafa

U(1)PQ AND AXION

- U(1)PQ gauge boson can obtain mass through Stueckelberg mechanism
- \circledast Below M_{PQ} , global U(1)_{PQ} \longrightarrow broken by $\langle X \rangle = M$
- * *M* set the axion decay constant $10^9 \text{ GeV} < M < 10^{12} \text{ GeV}$

* Take soft mass to be ~TeV
$$\longrightarrow \frac{F}{M} \sim 10^5 \text{ GeV} \longrightarrow M \sim 10^{12} \text{ GeV}$$

In fact both M and F-term can be generated through Fayet-Polonyi potential --Mild tuning of the flux needed to achieve necessary hierarchy

J. Marsano, N.Saulina S. Schafer-Nameki, J. Heckman and Vafa

U(1)PQ INDUCED SOFT MASSES

Integrate out heavy PQ gauge boson

$$\mathcal{L} \supset -g_{PQ}^2 e_X e_\Psi \int d^4\theta \frac{X^{\dagger} X \Psi^{\dagger} \Psi}{M_{PQ}^2}$$

Additional contribution to the scalar mass $m_{soft}^2 = m_{mGMSB}^2 + q_{\Psi} \Delta_{PQ}^2$.

$$\Delta_{PQ}^2 \sim g_{PQ}^2 \frac{F_X^2}{M_{PQ}^2}$$

 $\Delta_{PQ} \sim \mathcal{O}(100) \text{ GeV}$

ſ		10_M	$\overline{5}_M$	5_H	$\overline{5}_H$
	$q_{\rm Majorana}$	-4/5	-8/5	+8/5	+12/5

Cosmological constraint

$$\Delta_{PQ} \gtrsim 50 \text{ GeV}$$

Negative sign -> Lower $m_{\tilde{q}}, m_{\tilde{l}}$

SOFT TERMS AT LOW ENERGY

- GMSB + PQ deform. set BC @ M_{mess}
- Effective Parameters for Pheno Study:
 - $\ll \Lambda \ (\Lambda \equiv F/M) \text{ and } \Delta_{PQ}$
 - $N_{10} = 1, 2 (N_5 = 3, 6)$
 - * $B\mu = 0 @ M_{mess} \sim 10^{12} \text{ GeV}$ -- fix tan β at low scale

* RG evolving of soft parameters down to TeV scale

DETAIL FEATURE IN SOFT TERMS

Scalar Mass $m_{gaugino} \sim N_{10} \frac{\alpha}{4\pi} \Lambda \qquad \qquad \text{No PQ shift}$ $m_{scalar}^{2} = \hat{m}_{scalar}^{2} + e_{\Phi} \Delta_{PQ}^{2}$ $\hat{m}_{scalar} \sim \sqrt{N_{10}} \frac{\alpha}{4\pi} \Lambda$

$$m = \widehat{m} \sqrt{1 - \frac{\Delta_{PQ}^2}{\widehat{m}^2}},$$

- Small for squark
- Large for sleptons -> largest for lightest stau

THE LSP

* Gravitino mass:
$$m_{\tilde{G}} \sim \frac{F}{M_p} \sim 10 - 100 MeV$$

Heckman, Tavanfar and Vafa, arXiv:0812.3155

** NLSP decay to Gravitino $\Gamma(\tilde\psi\to\tilde G+\psi)\sim \frac{m_{NLSP}^5}{F_X^2}$

** NLSP is quasi-stable, lifetime : one sec - an hour

Δ_{PQ} and Slepton Mass

-- $N_{10}=1, \Lambda = 50 \text{ TeV}$

Δ_{PQ} and Slepton Mass

-- $N_{10}=2, \Lambda = 53 \text{ TeV}$

NLSP -- STAU / BINO

NLSP -- STAU / BINO

THE WHOLE SPECTRUM

N₁₀=1, Λ = 50 TeV (Benchmark 1)

EFFECTS ON SPARTICLE DECAY

- * Squarks and gluino decay not sensitive to Δ_{PQ}
- * Neutralino and chargino decay change significantly

DIFFERENCE FROM OTHER MODELS

- ** Although a deformation of mGMSB, it is narrow and less studied region of parameter space
- Qualitative comparison with mGMSB and mSUGRA

	low scale mGMSB	FGUT	mSUGRA	
SUSY scale	$10^5 { m GeV}$	$10^8 - 10^9 { m GeV}$	$10^{11} { m GeV}$	
LSP	Gravitino	Gravitino	χ1	
NLSP	short-live χ 1 or stau	long-lived stau	short-live χ 2 or stau	
Signal	$\gamma + Et+jets$	heavy "muon"	Et+jets	

WHAT CAN WE SEE AT LHC?

- Rest of the Talk: Focus on stau NLSP scenario
- Main Questions:
 - How staus are produced and detected at LHC ?
 - What are the signals? How they depends on F-GUT parameters?
 - What is the prospect for discovery?
 - Can we identify F-GUTs?

LONG-LIVED STAU SEARCH IN THE PAST

or Charged Heavy Massive Particle(CHAMP)

LEP II: m >100GeV

LEPSUSYWG/02-05.1

D0: 2 isolated µ w/ pt> 20 GeV PRL 102, 161802(2009) No Mass limit on stau!

CDF: 1 isolated μ with pt > 40 Gev

T. Aaltonen et al. PRL103, 021802 (2009)

 σ <10fb at 95% C.L

P. Achard et al., Phys. Lett. B 517, 75 (2001).

Limit on the stau mass is model dependent (depend on other sparticle mass) For FGUTs, m > 100 GeV

STAU PRODUCTION IN LHC

- Superpartners are produced in pair <-- R-parity</p>
- Cascade Decays
- All SUSY events : 2 stau + X
- NO LARGE MISSING ENERGY

PRODUCTION RATE @ LHC

 $N_{10} = 1$ ~0.3 pb 1 $\Lambda = 50 \,\mathrm{TeV}$ σ_{tot} $\sigma_{\tilde{q}\,\tilde{g}}$ $\Delta_{\rm PQ} = 140 \, {\rm GeV}$ $\sigma_{ ilde{q}\, ilde{q}}$ ~0.07 pb 0.1 $\sigma_{\tilde{\chi}^0_2 \tilde{\chi}^{\pm}_1}$ $\tilde{\chi}^+_1 \tilde{\chi}^-_1$ σ 0.01 σ (pb) $\sigma_{ ilde{ au}_1 ilde{ au}_1}$ $\sigma_{\tilde{l}\,\tilde{l}}$ 0.001 $\sigma_{\tilde{g}\tilde{g}}$ 10-4 10⁻⁵ 8 10 12 14 6 \sqrt{s} (TeV)

LO cross section from Pythia

DETECTOR AND TRIGGER

* Muon trigger (efficiency drop very fast below $\beta = 0.8$)

* Muons w/ low velocity($\beta < 0.6$) are not trigger by Muon trigger would reach the muon chamber too late, out of Bunch Crossing time 25ns

HOW TO ISOLATE STAUS

Triggered as a muon, but much more energetic ! 影

- * Heavy --> expect low velocity (β)
 - Time-of-flight measurement in muon chamber 彩

recently using fast-moving stau also proposed

> Jie Chen and T. Adams arXiv:0909.3157 [hep-ph]

Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics arXiv:0901.0512

SIMULATION

- * Consider stau candidate with $0.6 < \beta < 0.91$, pass the muon trigger with 100% efficiency
- * Detector resolution of stau velocity and momentum $\frac{\sigma_{\beta}}{\beta} = 0.028\beta, \quad \frac{\sigma_{p}}{p} = \frac{k_{1}p}{\text{GeV}} \oplus k_{2}\sqrt{1 + \frac{m_{\tilde{\tau}}^{2}}{p^{2}}} \oplus \frac{k_{3} \text{ GeV}}{p}$ $k_{1} = 0.0118\%, \quad k_{2} = 2\% \text{ and } k_{3} = 89\%$

- Event Generation Pythia + basic detector effects
- \ll leptons: e/mu w/ Pt > 10 GeV and $|\eta| < 2.5 + stau with \beta > 0.91$
- # jets: Pt >50GeV and η <2.5

SIGNAL - INCLUSIVE STAU($\tau + X$)

- 1. At least one stau candidate
- 2. \geq 1 jet w/ Pt >50GeV and E/t >50GeV(Trigger-level)

3. Effective Mass > 800 GeV

$$n_{eff} = \sum_{i=1}^{\min(4,N_{jet})} p_T^{jet,i} + \sum_{i=1}^{\min(2,N_{\mu})} p_T^{\mu,i}.$$

OTHER CHANNELS - $(\tilde{\tau} + \text{LEPTONS})$

OTHER CHANNELS - $(\tilde{\tau} + \text{LEPTONS})$

- Lots of leptons from cascade decay
- Increase with PQ deformation

$$\chi_{2}^{0} \rightarrow l + l \rightarrow 2l + \tau + \tilde{\tau},$$
$$\tilde{\nu} + \nu \rightarrow 2\nu + \tau + \tilde{\tau},$$
$$\tilde{\tau} + \tau$$
$$\chi_{1}^{\pm} \rightarrow \tilde{\tau} + \nu_{\tau},$$
$$\tilde{\nu} + \tau \rightarrow \tilde{\tau} + 2\tau + l$$

INCLUSIVE "MUON"

- # Hard leptons + jets, where no isolation of stau is necessary.
- SM Background can reduced by hard cuts
 - At least two hard leptons with $p_T > 100 \text{ GeV}$
 - At least two hard jets with $p_T > 150$ GeV.

- $\beta > 0.67, p_T > 20$ GeV and $|\eta| < 2.5$
- SS: A pair of same-sign isolated leptons.
- 31: Three isolated lepton candidates.
- 4l+: Four or more isolated lepton candidates.

IS IT F-GUTS?

Once long-lived stau is confirmed (from the tau rich events), there are only few possible scenarios, e.g. minimal GMSB models

Two major ways:

- superpartner masses
 - -- measurement can be done at the LHC

* very few number of parameters
 -- measuring mass of squark and gluino fix N10 and Λ; measuring other mass give additional checks

susy breaking scale
-- measure the lifetime of stau

very challenging at LHC

Non-collider approach: staus produced by neutrinonucleon interaction and detected by Neutrino telescope

Albuquerque, Burdman, Chacko, Phys.Rev.Lett.92:221802,2004

MEASURING MASS

Other masses can be constructed by selecting proper final-state particles

Construct Invariant Mass distribution

With 30 inv fb, the following precision can be achieved $\Delta m_{\tilde{\tau}_1} = 0.021 \text{ GeV}, \ \Delta m_{\tilde{\nu}_{\tau}} = 1.2 \text{ GeV}, \ \Delta m_{\tilde{l}_L} = 2.0 \text{ GeV}$ $\Delta m_{\tilde{\chi}_1^0} = 0.9 \text{ GeV}, \ \Delta m_{\tilde{\chi}_2^0} = 2.0 \text{ GeV},$ $\Delta m_{\tilde{q}_R} = 2.8 \text{ GeV}, \ \Delta m_{\tilde{q}_L} = 3.7 \text{ GeV}, \ \Delta m_{\tilde{b}_1} = 57.7 \text{ GeV}.$

Hinchliffe Paige '98, Ellis etal '06 Ibe Kitano '07, Ito Kitano Moroi '09

EXAMPLE

	$N_{10}=1, \Lambda = 50 \text{ TeV}$				
	$\Delta_{PQ}=140GeV$	parameter	$\mathrm{Maj}_{\mathrm{mid}}^{(1)}$	mGMSB1	mGMSB2
		M _{mess}	10^{12}	10^{12}	2×10^9
**	Compare F-GUT Benchmark with mGMSB	\sqrt{F}	2.2×10^8	2.2×10^8	10^{7}
		aneta	24.05	34.7	24.5
		$ m_{\tilde{g}}$	1112	1113	1116
	Vary mGMSB parameters: $M_{mess}, \Lambda, \sqrt{F}, \tan \beta$ very close	$m_{\widetilde{\chi}^0_1}$	198.6	199.0	199.3
		$m_{\widetilde{\chi}^0_2}$	377.1	379.4	378.0
		$m_{\widetilde{\chi}_1^{\pm}}$	380.3	382.3	381.2
		$m_{ ilde{u}_L}$	1106	1112	1102
		$m_{ ilde{u}_R}$	1059	1066	1063
		$m_{ ilde{t}_1}$	857.6	866.7	898.1
		$m_{ ilde{t}_2}$	1050	1047	1059
		$m_{ ilde{b}_1}$	997.2	982.2	1014
	L	$m_{\tilde{b}_2}$	1032	1032	1046
		$m_{ ilde{e}_L, ilde{\mu}_L}$	383.0	421.7	382.2
		$m_{ ilde{ u}_e, ilde{ u}_\mu}$	372.5	412.1	371.6
	different fixed	$\longrightarrow m_{\tilde{e}_R,\tilde{\mu}_R}$	214.3	246.9	204.9
		$\rightarrow m_{\tilde{\tau}_1}$	175.0	174.8	174.7
		$m_{ ilde{ u}_{ au}}$	300.1	400.4	307.7
		$m_{ ilde{ au}_2}$	384.0 114.2	422.3 114.2	380.1 119 0
**	Distinguishing models is possible	m_h	114.0 602 1	114.0 614 9	115.0 623 /
	require large luminosity	A	030.1	014.2	020.4

STOPPED STAU?

Low velocity stau can be stopped

- Inside detector: stau decay not correlated with the bunch crossing, difficult to trigger (with normal trigger) with modified trigger see Asai, Hamaguchi and Shirai, Phys.Rev.Lett.103:141803,2009
- Outside detector:
 - External detector, e.g. Water Tank -- require lifetime long enough
 - Stau trapped in Cavern Material decaying back to detector

Buchmuller etal '04 Feng and Smith '04 De Roeck etal '05 Hamaguchi etal '04, '06,'09

STOPPED STAU?

The faction of low velocity stau is small --> need large luminosity

CONCLUSION

- F-GUTs is a rigid frameworks for SUSY GUTs -- just enough to fit various aspects of phenomenological ingredient
- * Embedding of GMSB in the framework is natural and predicative
- It can be tested at the LHC within a few years
- * It also interesting to see if these local construction can be globally consistent.