The hunt for new physics at the LHC

- The standard model
- Testing the standard model
- Problems
- Beyond the standard model/paradigm
- New physics at the LHC

The Standard Model

- Standard model: $SU(2) \times U(1)$ (extended to include ν masses) + QCD + general relativity
- Mathematically consistent, renormalizable theory
- Correct to 10^{-16} cm:
 - QCD: short distance, long distance symmetries
 - QED, WCC, WNC, W, Z
 - Gauge self-interactions
- Missing: Higgs (or alternative), dark matter, dark energy
- Complicated, free parameters, fine tunings \Rightarrow must be new physics

UCSB, May 2010

The Fundamental Forces

UCSB, May 2010

Unification of Forces

Strong	Electromagnetic	Weak	Gravity	
hadrons: $p, n;$ pions: $\pi^{\pm}, \pi^{0};$ (QCD:quarks,gluons)	charged particles: $e^-, \mu^-, \tau^-;$ $p; \pi^\pm$	$p,n,\pi;~e,\mu, au;,$ neutrinos: $ u_e, u_\mu, u_ au$	all particles (always attractive)	
nuclear binding; energy in stars	atoms, crystals, molecules; light; chemical energy	$egin{array}{cc} ext{decays:} & n & ightarrow \ pe^- ar{ u}_e; & ext{element} \ ext{synthesis} \end{array}$	weight; binding of solar system, stars, galaxies	
	$\leftarrow E + B \rightarrow$ (Maxwell)			
\leftarrow QCD \rightarrow	$\leftarrow Electroweak \ (S$			
← Gr				
$\leftarrow \qquad \text{Theory of Everything (superstring)?} \qquad \rightarrow \qquad $				

The Standard Model

 \bullet Gauge group SU(3) imes SU(2) imes U(1); gauge couplings g_s , g,~g'

$$\left(\begin{array}{c} \boldsymbol{u} \\ \boldsymbol{d} \end{array}\right)_{\boldsymbol{L}} \quad \left(\begin{array}{c} \boldsymbol{\nu}_{\boldsymbol{e}} \\ \boldsymbol{e}^{-} \end{array}\right)_{\boldsymbol{L}}$$

 $egin{aligned} & egin{aligned} & egi$

• SU(3): $u \leftrightarrow u \leftrightarrow u$, $d \leftrightarrow d \leftrightarrow d$ (8 gluons)

- SU(2): $u_L \leftrightarrow d_L$, $\nu_{eL} \leftrightarrow e_L^ (W^{\pm})$; phases (W^0)
- *U*(1): phases (*B*)
- Heavy families $(c, s, \nu_{\mu}, \mu^{-}), \ (t, b, \nu_{\tau}, \tau^{-})$

UCSB, May 2010

Quantum Chromodynamics (QCD)

- QCD now very well established
- Short distance behavior (asymptotic freedom)
- Confinement, light hadron spectrum (lattice)
 - $g_s = O(1)$ ($lpha_s(M_Z) = g_s^2/4\pi \sim 0.12$)
 - Strength + gluon self-interactions \Rightarrow confinement
 - Yukawa model \Rightarrow dipole-dipole
- Approximate global $SU(3)_L \times SU(3)_R$ symmetry and breaking $(\pi, K, \eta$ are pseudo-goldstone bosons)
- Unique field theory of strong interactions

Quantum Electrodynamics (QED)

Experiment	Value of $lpha^{-1}$	Precision	$\Delta_{oldsymbol{e}}$
$a_{oldsymbol{e}}=(g_{oldsymbol{e}}-2)/2$	$137.035 \ 999 \ 683 \ (94)$	$[6.9 imes 10^{-10}]$	-
h/m (Rb, Cs)	$137.035 \ 999 \ 35 \ (69)$	$[5.0 imes10^{-9}]$	0.33 ± 0.69
Quantum Hall	137.036 003 0 (25)	$[1.8 imes10^{-8}]$	-3.3 ± 2.5
h/m (neutron)	137.036 007 7 (28)	$[2.1 imes10^{-8}]$	-8.0 ± 2.8
$\gamma_{p,3He}^{}$ (J. J.)	$137.035 \ 987 \ 5 \ (43)$	$[3.1 imes10^{-8}]$	12.2 ± 4.3
μ^+e^- hyperfine	137.036 001 7 (80)	$[5.8 imes10^{-8}]$	-2.0 ± 8.0

Spectacularly successful:

Most precise: e anomalous magnetic moment $\rightarrow \alpha$ Many low energy tests to few $\times 10^{-8}$ $m_{\gamma} < 6 \times 10^{-17}$ eV, $q_{\gamma} < 5 \times 10^{-30} |e|$ Running $\alpha(Q^2)$ observed

Muon g - 2 sensitive to new physics. Anomaly?

The Electroweak Theory

- QED and weak charged current unified
- Weak neutral current (Z)predicted $(\nu N \rightarrow \nu X)$, atomic parity violation
- Stringent tests of WCC, *CP*-violation, WNC, *Z*pole, beyond
- Fermion gauge and gauge self-interactions

UCSB, May 2010

Paul Langacker (IAS)

UCSB, May 2010

- SM correct and unique to zeroth approx. (gauge principle, group, representations)
- SM correct at loop level (renorm gauge theory; m_t , α_s , M_H)
- TeV physics severely constrained (unification versus compositeness)
- Consistent with light elementary Higgs
- Precise gauge couplings (SUSY gauge unification)

The Higgs Mechanism

- Gauge symmetry forbids elementary masses for W, Z, fermions
- Introduce Higgs field H, with classical value ν and potential energy $V(\nu) = \frac{1}{2}\mu^2\nu^2 + \frac{1}{4}\lambda\nu^4$
- W, Z, fermions acquire effective masses by coupling to H (transparent to photon)

- Higgs mass $M_H=\sqrt{-2\mu^2}=\sqrt{2\lambda}
 u$ ($u\sim 246$ GeV, λ unknown)
- LEP search $e^+e^- \rightarrow Z^* \rightarrow ZH$: $M_H > 114.4 \text{ GeV}$
- Indirect (electroweak radiative corrections)) + direct: $M_H < 149$ GeV (95%)
- Tevatron searches now sensitive enough for higher masses
- LHC will cover full range for standard model Higgs

Problems with the Standard Model

Lagrangian after symmetry breaking:

$$egin{aligned} \mathcal{L} &= \mathcal{L}_{ ext{QCD}} + \mathcal{L}_{ ext{gauge}} + \mathcal{L}_{ ext{Higgs}} + \sum_i ar{\psi}_i \left(i \ oldsymbol{\partial} - m_i - rac{m_i H}{
u}
ight) \psi_i \ &- rac{g}{2\sqrt{2}} \left(J_W^\mu W_\mu^- + J_W^{\mu\dagger} W_\mu^+
ight) - e J_Q^\mu A_\mu - rac{g}{2\cos heta_W} J_Z^\mu Z_\mu \end{aligned}$$

Standard model: $SU(2) \times U(1)$ (extended to include ν masses) + QCD + general relativity

Mathematically consistent, renormalizable theory

Correct to 10^{-16} cm

UCSB, May 2010

However, too much arbitrariness and fine-tuning: O(27) parameters (+ 2 for Majorana ν) and electric charges

• Gauge Problem

- complicated gauge group with 3 couplings (only EW chiral)
- charge quantization ($|q_e| = |q_p|$) unexplained
- Possible solutions: strings; grand unification; magnetic monopoles (partial); anomaly constraints (partial)

• Fermion problem

- Fermion masses, mixings, families unexplained
- Neutrino masses, nature? Probe of Planck/GUT scale?
- CP violation inadequate to explain baryon asymmetry
- Possible solutions: strings; brane worlds; family symmetries; compositeness; radiative hierarchies. New sources of CP violation.

• Higgs/hierarchy problem

- Expect $M_H^2 = O(M_W^2)$
- higher order corrections: $\delta M_H^2/M_W^2 \sim 10^{34}$

Possible solutions: supersymmetry; dynamical symmetry breaking; large and/or warped extra dimensions; Little Higgs; anthropically motivated fine-tuning (split supersymmetry) (landscape)

- Strong CP problem
 - Can add $\frac{\theta}{32\pi^2}g_s^2 F\tilde{F}$ to QCD (breaks, P, T, CP)
 - $d_N \Rightarrow heta < 10^{-11}$, but $\delta heta ert_{
 m weak} \sim 10^{-3}$
 - Possible solutions: spontaneously broken global U(1) (Peccei-Quinn) \Rightarrow axion; unbroken global U(1) (massless u quark); spontaneously broken CP + other symmetries

UCSB, May 2010

• Graviton problem

- gravity not unified
- quantum gravity not renormalizable
- cosmological constant: $\Lambda_{
 m SSB}=8\pi G_N \langle V
 angle>10^{50}\Lambda_{
 m obs}$ $(10^{124}$ for GUTs, strings)

Possible solutions:

- supergravity and Kaluza Klein unify
- strings yield finite gravity
- $\Lambda_{cosm} = \Lambda_{bare} + \Lambda_{SSB}$. Anthropically motivated fine-tuning (landscape)?

Necessary new ingredients

- Mechanism for small neutrino masses
 - Planck/GUT scale? Small Dirac (intermediate scale)?
- Mechanism for baryon asymmetry?
 - Electroweak transition (Z' or extended Higgs?)
 - Heavy Majorana neutrino decay (seesaw)?
 - Decay of coherent field? CPT violation?
- What is the dark energy?
 - Cosmological Constant? Quintessence?
 - Related to inflation? Time variation of couplings?

- What is the dark matter? (Recent anomalies in e^+/e^- , DAMA, etc?)
 - Lightest supersymmetric particle (LSP)? Axion? Gravitino? Primordial black hole? SuperWIMP?
 - "Ad hoc" weakly coupled dark sector?
- Suppression of flavor changing neutral currents? Proton decay? Electric dipole moments?
 - Automatic in standard model, but not in extensions ("particle Fermi paradox" a.k.a. little hierarchy problem)

New Physics

- A new layer at the TeV scale
 - Compositeness, Little Higgs, twin Higgs, Higgless, dynamical symmetry breaking, strong dynamics
 - Precision electroweak constraints, FCNC, UV completions?
- Large and/or warped extra dimensions; possible low fundamental or string scale
- Unification at the Planck scale, $M_P = G_N^{-1/2} \sim 10^{19} \; {
 m GeV}$
 - Supersymmetry (between fermions and bosons), grand unification, strings?
 - Top-down remnants: Z', W', extended Higgs, exotic fermions, ...

Compositeness, Strong Dynamics

- **Composite fermions, scalars** (onion-like layers)
 - Not like to atom ightarrow nucleus $+e^-
 ightarrow p + n
 ightarrow$ quark
- Alternative electroweak breaking: Little Higgs, dynamical symmetry breaking, topcolor, ···
- At most one more layer accessible (Tevatron, LHC, ILC)
- Rare decays (e.g., $K \rightarrow \mu e$)
- Usually few % effects at LEP/SLC, LEP2, WNC (challenge for models)
- LHC: anomalous VVV, new particles, strong $WW \rightarrow WW$
- Also: FCNC, EDM

Extra dimensions (deconstruction, brane worlds)

- Motivated by strings
- Can be large, warped, stringy
- Matter can be trapped on branes, at boundaries, or in bulk

- E.g., new dimensions much larger than $M_P^{-1} \sim 10^{-33}~{\rm cm}$
- Fundamental scale: $M_F \sim$ (1 - 100) TeV $\ll \bar{M}_{Pl} =$ $1/\sqrt{8\pi G_N} \sim 2.4 \times 10^{18}$ GeV
 - Assume δ extra dimensions with volume $V_{\delta} \gg M_F^{-\delta}$ $ar{M}_{Pl}^2 = M_F^{2+\delta} V_{\delta} \gg M_F^2$

(but new hierarchy problem)

- LHC: Kaluza-Klein excitations, string excitations, graviton emission, black holes
- Astrophysics
- Macroscopic gravity effects

Unification

- Unification of interactions
- Grand desert to unification (GUT) or Planck scale
- Elementary Higgs, supersymmetry (SUSY), GUTs, strings
- Possibility of probing to M_P and very early universe

Supersymmetry

- Fermion \leftrightarrow boson symmetry
- Motivations
 - Incorporation of gravity (but M_{SUSY} could be very large)
 - Stabilization of electroweak scale

But landscape ideas (anthropically-motivated fine tuning); variants (e.g., split supersymmetry); alternative EWSB

UCSB, May 2010

- Gauge unification
- Cold dark matter (LSP) if R-parity (R_P) conserved
- Z-pole: any new physics decouples
- Radiative electroweak breaking (large $m_t
 ightarrow m_{H_u}^2 < 0$)
- Anomalous magnetic moment of muon $(g_{\mu} 2)$?

- Additional charged and neutral Higgs particles
 - $M_{H^0}^2 < \cos^2 2\beta M_Z^2$ + H.O.T. ($O(m_t^4)$) < (130 GeV)², consistent with LEP (standard model: $M_{H^0} < 1000$ GeV)
 - CDF/D0 searches for heavier states
 - LHC ultimately sensitive to entire range

• Simplest version: supersymmetric contribution to Higgs mass must be of O(100) GeV (not 10^{19}) (μ problem)

• Superpartners

- $q \Rightarrow \tilde{q} \text{ (scalar quark)}$ $\ell \Rightarrow \tilde{\ell} \text{ (scalar lepton)}$
- $H \Rightarrow ilde{H}$ (Higgsino)
- $G, W, B \Rightarrow ilde{G}, ilde{W}, ilde{B}$ (gauginos)
- typical scale: several hundred GeV
- LSP: dark matter candidate
- SUSY breaking \Leftrightarrow large m_t
- May be large FCNC, EDM, $\Delta(g_{\mu}-2)$

Tevatron, LHC Signatures

- Squarks, gluinos pair-produced at large rate by QCD
- Sleptons, charginos, neutralinos: smaller direct rate (Drell-Yan and *t*-channel squark), but occur in squark decay chains
- Missing transverse energy: decay chains end in LSP (e.g., $\tilde{\chi}_1^0$ in supergravity)
- Cascade decays → multiple jets and leptons (same/opposite sign dileptons, trileptons); kinematic edges (mass eigenstates); some spin information
- Same sign leptons \leftrightarrow Majorana fermions

UCSB, May 2010

• LHC reach at 7 TeV (Baer, Barger, Lessa, Tata, 1004.3594)

Grand Unification

- Unify strong SU(3) and electroweak $SU(2) \times U(1)$ in simple group (e.g., SU(5), $SO(10), E_6$), broken at \sim 10^{16} GeV
- Gauge unification (only in supersymmetric version)

- Seesaw model for small m_{ν} (but why are mixings large?)
- Quark-lepton (q l) unification (\Rightarrow charge quantization)
- q l mass relations (work only for third family in simplest versions)
- Proton decay? (simplest versions excluded)
- Doublet-triplet problem?
- String embedding? (breaking, families may be entangled in extra dimensions)

Superstrings

- Finite, "parameter-free" "theory of everything" (TOE), including quantum gravity
 - 1-d string-like object
 - Appears pointlike for resolution $> M_s^{-1} \sim M_P^{-1} \sim 10^{-33}~{
 m cm}$
 - Vibrational modes \rightarrow particles
 - 10 space-time dimensions ightarrow 6 must compactify to scale M_s^{-1}
 - 4-dim supersymmetric gauge theory below M_s
 - May also be solitons (branes), terminating open strings

• Problems

- Which type? Dualities
- Which compactification manifold?
- Relation to supersymmetric standard model, GUT?
- Supersymmetry breaking/mediation? Scale? Cosmological constant?
- Many moduli/vacua. Landscape ideas any predictability left? (TOE ⇒TOA?)
- The great debate: is our physics environmental or selected?
 - Small cosmological constant, weak scale appear needed for life
 - Physics depends on location in multiverse? i.e., $O(10^{500})$ vacua of landscape continually sampled by pockets of eternally inflating multiverse!

Remnant Physics from the Top-Down

- Z' or other gauge (μ problem, electroweak baryogenesis, \cdots)
- Extended Higgs/neutralino (doublet, singlet)(cascades, dark matter, · · ·)
- **Quasi-Chiral Exotics** (may be quasi-stable)
- Quasi-hidden (SUSY breaking? Dark sector? Composite family?)
- Non-seesaw $m_{
 u}$
- LED/low M_s (Kaluza Klein/string excitations, TeV black holes)
- Charge 1/2 (Confinement?, Stable relic?)
- Time varying couplings
- LIV, VEP (e.g., $v_{
 m max}$, decays (oscillations) of HE $\gamma,~e,$ gravity waves (u's))

Conclusions

- The standard model is approximately correct description of fermions/gauge bosons down to $\sim 10^{-16}$ cm $\sim \frac{1}{1 \text{ TeV}}$ (but EWSB?)
- Standard model is complicated/fine-tuned \rightarrow must be new physics
- Precision tests severely constrain new TeV-scale physics
- Promising theoretical ideas at Planck scale
- Promising experimental program at LHC (also flavor, ν , cosmology)
- Challenge to make contact between theory and experiment
- Many semi-realistic string constructions suggest extended gauge, Higgs, neutralino, fermion sectors, alternative m_{ν}

UCSB, May 2010