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Spherical Delayed Detonation Maodels - Hoflich

 Region of complete burning to NSE

» 0to ~ 9,000 km s! (7> 5.5x 10° K)
 Explosive O burning and incomplete Si burning

» 10,000 — 15,000 km s'! (5x 10° > T> 3 x 10° K)
e Explosive C burning produces: O, Mg, Ne

» velocities > 14,000 km s! (T'< 3 x 10° K)



Model Predictions:
NILTE spectra and light curves
Hoflich (From Wheeler et al. 1998)

e My, =-19.21 at +18.5 d
e My=-19.31 at +17.5d

e Mg II lines (0.922 and
1.091 pum) requires
abundance > 1-2%

e After My, features from

Fe groups dominate
spectra (1.5 and 1.8 um)




The Search for
Unburned Material

The near infrared (0.8-2.5 pm) has several OI and CI lines.
“Snapshot” program

36 NIR spectra obtained before V ___at the IRTF using the SpeX

mnstrument.

LLRS mode includes the OI line at 0.7774 pum.
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Transition

Phase

+40 to +76d
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log (F, /F, (A = 1.00um)) + Constant

No longer a defined
photosphere

Except where line

2003du +76 |
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blanketing forms a I
pseudo-photosphere

Fe-group emission
Some Coll resolved
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The Composition of Unburned Matter

e Pristine matter from the progenitor
consists of carbon and oxygen in

approximately equal abundance
» /D accretes matter through Roche-lobe
overflow from a companion
* Shell burning in low pressure and high
temperature produces C and O with
mass ratio near unity
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The Composition of Unburned Matter

* C and O in the outer layers have

predominantly the same ionization stage
* Radiative transitions are rapid in time and space
* lonization balance determined by Fe-group
photo-ionization boundaries
* Difference in first ionization potential for C and O
~1-2 x 10° km s
e Size of OI region is ~9 x 10° km s'!
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11 Figure from Marion, et al. 2006



Estimating Relative

Line Strengths for O and C
(Marion et al. ApJ. 645, 1392, 20006)

The strongest CI line (1.0693 pm) 1s estimated to be 49.7
times stronger than the strongest Ol line (0.7774 pm),
given equal abundance and departure from L'TE.
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Figure from Marion, et al. 2006

1.2

Search Results

No evidence for
carbon (CI or CII).

The most likely CI
feature 1s at 1.135 um
in the spectrum from

SN 2004bw.

A strong detection is
made from OI at
A= 0.7774 um

rest



Ol is found between 9 -18 x 10° km s
Velocity Space for Mgll 1s the same as for Ol

The line-forming region for OI comprises about one third of the matter
in SNe Ia and extends to the outer layers.

Any matter from these SNe Ia containing C and O 1in nearly equal
abundance, must have an expansion velocity in excess of 18,000 km s,

The upper limit on the mass of carbon beyond this velocity is:
3.6 x 102 solar masses.

14




15

Relative Abundance
of OI and CI

Oxygen is more abundant than carbon by factors
of 102 — 10’ at = 11,000 km s!
(confirmed by Tanaka; seminar last Friday)

OI/CI remains well above unity to velocities in
excess of 18,000 km s




No Carbon in the Extreme Outer Layers

Quimby, et al. (2005) show that SiIl is present in optical
spectra of SNe Ia to velocities of = 24,000 km s!.

Silicon in this region can only be produced from a C/O WD
progenitor by explosive O burning at temperatures greater
than those required to burn C into O and Mg.
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All results are consistent with DD Models
for Branch “Core Normal” SN Ia

Deflagration to Detonation Transition
models for SNe Ia predict

observations of:
1. Concentric layers of burning products
2. Lack of carbon in all regions
3. OI and MgllI in the same physical space
(C burning products together)
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DD Models for subluminous SN Ia
Hoflich et al. (2002)

Delayed Detonation model for SN 1999by
chosen to match optical light curve, small
S0Ni mass, ~ 0.1 solar mass

Predict unburned C above ~ 15,000 km s

Predict, observe CI line (1.0693 pm)[and O
and Mg]

— =

Can observe CI when present

DD models can reproduce optical and NIR
aspects of spectral evolution of normal and
subluminous SN Ia




First MIR Observations of SN Ia
Gerardy et al. astro-ph/0702117
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Summary

Matching peak brightness, light curves is
necessary, but not sufficient

To earn a seat at the table, dynamic models must
do at least as good a job of matching spectral
evolution as spherical delayed detonation
models => the new W7

Transition to detonation must be understood
Spherical DD models are not complete

No C, but O and Mg in same outer region. The
entire progenitor must be burned for “core
normal” SN Ia, deflagration models are ruled out

How do we observationally discriminate between
deflagration and delayed detonation models for
subluminous SN Ia?

MIR shows spectacular details, layering, °°Ni
“hole,” Argon asymmetry
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Summary

Sample of 41 NIR spectra from SNe Ia

Large sample size facilitates comparison
to other data libraries — secondary
parameters

Spectra from normal SNe [a show
consistent evolution

Burning products are layered — no mixing
No C, but O and Mg in same region

The entire progenitor must be burned

DD models are favored

Deflagration models are discouraged

MIR shows spectacular details, layering,
°6Ni “hole,” Argon asymmetry,
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