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Motivation

Want to understand how outbursts fit in with the more day-to-day aspects of the
accreting systems in which they occur

Constrain short period binary population: angular momentum loss, mass
distributions, period distributions

Provide context for individual runaways

Outline

Thermal Structure of Accreting envelopes

thermonuclear instability – Mign

Equilibrium Tc

Accretion in Catalysmic Variables – expected〈Ṁ〉

Period-specific Nova rate

Open questions
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Nova Accretion and Outburst

Accretion

taccretion ∼
Mign

Ṁaccrection

∼ 105 − 108 yr

Outburst

toutburst ∼
Mign

Ṁloss

∼ days-months

Here I will discuss Mign which is important or both of these phases.
Determination of Mign involves mostly properties of the accretion phase.
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Available Parameter Space
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Contours spaced by ∆ log(Mign/M⊙) = 0.2
Townsley & Bildsten 2005, ApJ, 628, 395

Strong contrast in Mign at around
few×10−10M⊙ yr−1 created by
change in ignition mode due to dif-
ferent Tc as determined by 〈Ṁ〉
(more on this later).

CVs generally are thought to have
accretion rates that are low or high,
but not much in between.

A system at a given mass can
have a factor of 10 range in Mign

depending on what evolutionary
stage it is in.
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Two Kinds of Ignition

m

〈Ṁ〉 = 3 × 10−9M⊙ yr−1

Tc = 107

Direct to p + C or 3He +3 He

Most novae by number

〈Ṁ〉 = 5 × 10−11M⊙ yr−1

Tc = 5 × 107

p + p (partial chain) envelope heating
eventually leads to p + C
Large accumulated mass
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Heat Sources
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H-He Envelope

(very) leaky entropy advection

Heat liberated by compression is transferred out to surface
and in to core. Often called “compressional heating”.

Heat sources:

Accretion light: only very near surface while actively
accreting

Compression: throughout star, mostly in light-element
layer (really gravitational potential energy)

Nuclear “simmering”: fusion near base of accreted layer
(eventually becomes fast and triggers classical nova)

Core heat capacity
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Quasi-static Profile
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Local thermal time short compared to

accretion

tth ≡
cP T

“

4acT4

3κy2

” < tacc ≡
∆M

〈Ṁ〉

where y = ∆M/4πR2 is the column depth.

Thermal state set by flux from deeper
layers rather than from fluid element’s

history.
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0 staticHeat equation near surface:
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dL

dMr
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∂
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∂s
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+Tvr
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where vr = −〈Ṁ〉/4πr2ρ. Solve with structure equations. Gives excellent
representation of envelope sructure.

L ≃
kTc

µmp
〈Ṁ〉

Energy release related to heat content of compressed material.
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Tc and Classical Nova Ignition
Physical Conditions at base of H/He
Envelope determine runaway
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Evaluating envelope stability:

∂ǫN

∂T
=

∂ǫcool

∂T

One-zone approximation,
ǫcool ∝ 4acT 4/κy2, only works
in upport portion.

Lower part of curved better
modeled by
ǫcool = L(Tc)/Macc, were L(Tc)
is given by that of a cooling
WD: radiative envelope
overlying a conductive region.

Thermal state (Tc) has an
important influence on when
the instability line is crossed.

Composition has significant
influence on position of upper
portion.
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Cooling-Heating Cycle
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Base of accreted layer

Core will be Reheated until equilibrium is reached.
Core thermal time ∼ 108 yr
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Cooling-Heating Cycle
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Cooling-Heating Cycle

-1.5

-1

-0.5

0

0.5

L
co

re
 (

10
-3

L
O·
)

0 0.5 1 1.5 2 2.5 3
Accumulated Mass ( 10

-4
M

O·
)

12

13

14

15

T
ef

f

WD Cooling WD Heating

10
14

10
15

10
16

10
17

10
18

10
19

10
20

P (erg cm
-3

)

10
6

10
7

T
 (

K
)

Base of accreted layer

Core will be Reheated until equilibrium is reached.
Core thermal time ∼ 108 yr

〈Lcore〉 =
1

tCN

Z tCN

0

Lcore dt
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〈Lcore〉 and the equilibrium Tcore

〈Lcore〉 =
1

tCN

Z tCN

0

Lcore dt

When Mej = Mign, 〈Lcore〉 = 0 defines an

Equilibrium Tcore

which is set by M and 〈Ṁ〉
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CV Angular Momentum Loss
J̇ determines evolution of compact binary

Companion B field
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WINDWIND
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waves waves

gravity

Magnetic Braking
high J̇ , Porb & 3 hours

Magnetically attached wind from compan-
ion star
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Interrupted Magnetic (Wind) Braking?
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Evolved from
prescriptions which
reproduced the
companion contraction
necessary for the period
gap.

Predicts a strong
contrast in both 〈Ṁ〉
and evolution time – and
therefore space density
– of period bins

Difficult to test due to
CV variability and
complexity of disks, but
progress can be made
by other means such as
WD Teff . (Townsley & Bildsten 2003,

ApJ, 596, L227)

MWD = 0.7M⊙ , Howell, Nelson, & Rappaport 2001, ApJ 550, 897

Systems evolve from long to short orbital periods
due to angular momentum losses causing the or-
bit to decay.
Period gap caused by sudden drop in angular
momentum loss rate.
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WD Thermal State Evolution
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Phases of accretion

1. Magnetic Braking 〈Ṁ〉 ∼ 5 × 10−9M⊙ yr−1

2. Period gap 〈Ṁ〉 = 0

3. Gravitational radiation 〈Ṁ〉 ≃ 5 × 10−11M⊙ yr−1

4. Post-period minimum 〈Ṁ〉 < 10−11M⊙ yr−1

Phases of WD evolution

1. Reheating – Teff set by 〈Ṁ〉

2. Equilibrium – Teff set by 〈Ṁ〉

3. Cooling – Teff set by core cooling

Accretion resets the clock for WD cooling
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Classical NovaPorb Distribution
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Relative number of CVs

Theory curve uses Interrupted Magnetic
Braking for Porb(〈Ṁ〉) and population nP

(Howell, Nelson, Rappaport 2001, ApJ 550, 897)

νCNP = nP
〈Ṁ〉

Mign

But since nP ∝ M2/〈Ṁ〉 this gives

νCNP ∝
1

Mign

Thus the dominant contribution is from
the variation in the ignition mass across
the period gap (2-3 hours)

(Townsley & Bildsten 2005, ApJ, 628, 395)

Supports a factor of > 10 drop in 〈Ṁ〉 across gap

Consistent with idea that CVs evolve across the gap

Possible population of magnetic systems filling in gap

Ignores selection effects – hard to quantify
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Summary
Compression of envolope material by accretion sets
envelope thermal structure

CV evolution sets Tc frome 〈Ṁ〉 – leaves two parameters,
〈Ṁ〉, M and composition

Relative nova rate with orbital period reproduced by canon-
ical interrupted magnetic braking CV scenario

Open Questions

Relative role of enrichment from carbon-rich core material
before vs. during the runaway

Is scatter in maximum magnitude-rate of decline relation
from 〈Ṁ〉?

Mass evolution of primary

Does the outburst ignition type have ramifications for nucle-
osynthesis during outburst – Currently under investigation
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