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Motivation

» Want to understand how outbursts fit in with the more day-to-day aspects of the
accreting systems in which they occur

® Constrain short period binary population: angular momentum loss, mass
distributions, period distributions

® Provide context for individual runaways

Outline

Thermal Structure of Accreting envelopes
thermonuclear instability — Mg,

Equilibrium T

Accretion in Catalysmic Variables — expected (M)
Period-specific Nova rate

o000l

Open questions
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Nova Accretion and Outburst

Accretion Outburst
" Mign " Mign
accretion 7 : outburst :
Maccrection Mloss
~ 10° —10° yr ~ days-months

Here | will discuss M;s,, which is important or both of these phases.

Determination of M, involves mostly properties of the accretion phase.
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Avalilable Parameter Space

Strong contrast in M;,, at around
1 fewx107""Mg yr=! created by
- change In ignition mode due to dif-

= ferent 7. as determined by (M)
1 (more on this later).

4 CVs generally are thought to have
1 accretion rates that are low or high,
1 but not much in between.

1A system at a given mass can
1 have a factor of 10 range in My,
depending on what evolutionary

Mo (Mo) stage itis in.
Contours spaced by Alog(Mign/Mg) = 0.2

Townsley & Bildsten 2005, ApJ, 628, 395
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Two Kinds of Ignition
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(M) =3x10""Mg yr !
T, = 10"
Direct to p + C or 3He +> He

Most novae by number
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T.=5x 10"

(M) =5x10"" Mg yr~!

p + p (partial chain) envelope heating

eventually leads to p + C
Large accumulated mass
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T (K)

Heat sSources

J— _—

ADVECTION
"y / COMPRESSION
D e =
' HEAT TRANSPOR’
v

(very) leaky entropy advection

T T T T I T T
H-He Envelope

1 Heat liberated by compression is transferred out to surface
C-O cor¢ and in to core. Often called “compressional heating”.

Heat sources:

material moves inward @ Accretion light: only very near surface while actively
due to accretion i

accreting

7 ® Compression: throughout star, mostly in light-element
] layer (really gravitational potential energy)

| # Nuclear “simmering”: fusion near base of accreted layer

1 15I 1 1
log P

I20I 1 1 1

25  (eventually becomes fast and triggers classical nova)

® Core heat capacity
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QuaS| statlc Profile

1 Local thermal time short compared to
{accretion

T AM
tth p— CP— < tacc = —
(4acT4> (M)

3ky2

|where y = AM /47 R? is the column depth.

1Thermal state set by flux from deeper
~ {layers rather than from fluid element’s

8 ! 150 GMIM ) 4 “history. |
Heat equation near surface: O static
dL o 9 /5‘3/ ds
— =T = ) s =T~ +Tv, ==
a, N (875 or 8r) R TR
where v, = —(M)/4wr?p. Solve with structure equations. Gives excellent
representation of envelope sructure.
L~ *Le oy
HMp

Energy release related to heat content of compressed material.
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T,. and Classical Nova Ignition

Physical Conditions at base of H/He
Envelope determine runaway

Unstable

Stable

10° . 10"
p(gcm)

Evaluating envelope stability:

den _ Decool
oT oT
One-zone approximation,

€cool X 4acT4//ﬁsy2, only works
In upport portion.

Lower part of curved better
modeled by

€cool = L(Te)/Mace, were L(T¢)
IS given by that of a cooling
WD: radiative envelope
overlying a conductive region.

Thermal state (7.) has an
important influence on when
the instability line is crossed.

Composition has significant
iInfluence on position of upper
portion.
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Cooling-Heating Cycle
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® Core will be Reheated until equilibrium is reached.
Core thermal time ~ 103 yr
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Cooling-Heating Cycle
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Base of accreted layer |

® Core will be Reheated until equilibrium is reached.

Core thermal time ~ 103 yr
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(Leore) @nd the equmbrlum T

1 leN
<Lcore> - T Lcore dt
teN Jo

core

When Mg; = Mgy, (Lcore) = 0 defines an
Equilibrium Teore

which is set by M and (M)

74

/ /

Average L (10'3L o

6
T_(10°K)
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CV Angular Momentum Loss

J determines evolution of compact binary

WIND
WIND

Companion B fielc

—

WIND WIND

Magnetic Braking

high J, P,,;, > 3 hours
Magnetically attached wind from compan-
lon star

3 -3
. M R P,
Jmb = —9.4 X 1038 erg ( 2 ) ( 2 ) ( 0rb>

gravity L ‘ gravity
. YAVAVAyS=-

waves \\ o waves

Gravitational Radiation
low J

32GQ2wo
5¢9

4 2
a M M P —5
— 2.7 x 103 erg | — “WD2 orb
R My Mg, hr
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Interrupted I\/Iagnetlc (Wlnd) Braking?

® Evolved from

<M> (M yr )

Gra\,l | Magnetlc 0_65 1 prescriptions which
I Radiation ! Braking ¢ 1 reproduced the
168 4 companion contraction
- ] necessary for the period
N companlon @b v ] gap.
10°F - #® Predicts a strong
- ] contrast in both (M)
[ | and evolution time — and
1020k 0.08 @ pre CV_ therefore space density
- ' . 1yr - — of period bins
i _1 B - ]
_ ‘ 3-10yr| 10Yr | At=10 yr | ® Difficult to test due to
Al LN ' T B B CV variability and
10
0 ! 2 . (hr) 4 > ° complexity of disks, but
Mwywyp = 0.7M,, Howell, Nelson, &Rappap())c:rt 2001, ApJ 550, 897 pl’OgreSS can be made
Systems evolve from long to short orbital periods by other means such as
due to angular momentum losses causing the or- WD Teg. (Townsley & Bidsten 2003,
bit to decay. ApJ, 596, L227)

Period gap caused by sudden drop in angular
momentum loss rate.
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WD Thermal State Evolution

Phases of accretion

1. Magnetic Braking (M) ~ 5 x 1079 Mg yr—!

2. Period gap (M) =0

3. Gravitational radiation (M) ~ 5 x 10~ 11 Mg yr

4. Post-period minimum (M) < 10~ 11 Mg yr—1

Phases of WD evolution

1. Reheating — T.g set by (M)

E

2. Equilibrium — T.g set by (M)

3. Cooling — T, set by core cooling

L Accretion resets the clock for WD cooling
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Classmal NovaPOﬂD Distribution

] Theory curve uses Interrupted Magnetic

: Hlatlve number of CVs - Braking for P,,.,((M)) and population np
| |

| I | . I : I I I I 1 (Howell, Nelson, Rappaport 2001, ApJ 550, 897)
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| But since np o« My /(M) this gives

Number of Novae
ok

I 1
4+ . VOCNP X
i i ¢ Mign
21 LIHHIL\ " ] Thus the dominant contribution is from
0_ | | LL\ | the variation in the ignition mass across
0 1 2 4 5 6 the period gap (2-3 hours)

orb (hl’)

(Townsley & Bildsten 2005, ApJ, 628, 395)

® Supports a factor of > 10 drop in (M) across gap

® Consistent with idea that CVs evolve across the gap
® Possible population of magnetic systems filling in gap
® |Ignores selection effects — hard to quantify
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Summary

Compression of envolope material by accretion sets
envelope thermal structure

CV evolution sets T, frome (M) — leaves two parameters,

(M), M and composition
Relative nova rate with orbital period reproduced by canon-
ical interrupted magnetic braking CV scenario

Open Questions
Relative role of enrichment from carbon-rich core material
before vs. during the runaway

Is scatter in maximum magnitude-rate of decline relation
from (M)?

Mass evolution of primary

Does the outburst ignition type have ramifications for nucle-
osynthesis during outburst — Currently under investigation
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