Observations of SNe Ia that Provide Evidence for Circumstellar Interaction

Alicia Soderberg

March 23, 2007 KITP, UCSB

Two-pronged Approach: "All or nothing"

All: Hybrid SNe (H-rich la's, 2002ic-like, Type IIa)

- Optical spectroscopy (H α emission) \rightarrow Alex's talk
- Radio observations
- Host galaxy properties

Nothing: CSI in "normal" SNe Ia

- Optical spectroscopy (H α limits) \rightarrow Alex's talk
- X-ray observations
- Radio observations

Looking forward

How do we make progress?

All: Hybrid SNe

1997cy (z=0.064)

(Germany et al., 2000)

1999E (z=0.026)

(Rigon et al., 2003)

2002ic (z=0.067)

(Hamuy et al., 2003)

2005gj (z=0.062)

(Aldering et al., 2006)

SN7017 (z=0.27)

(Prieto, in prep)

2006gy ? (z=73 Mpc)

(Ofek et al., 2007)

(SNe IIn data from; van Dyk 1996)

Spectral properties (Alex's talk)

- SN Ia features (91T-like) with broad absorption lines
- $H\alpha$ emission with broad base and narrow peak
- H α strength varies with time (*unique* to each SN)
- Inferred mass loss rates are high: ~ 10⁻² M_☉/yr (Hamuy, 2003)
- → 10-100 times higher than SNe IIn, and comparable to Eta Carinae.

 $F_{\lambda}[erg \ s^{-1} \ cm^{-2} \ Å^{-1}]$

Ten years later, we've come full circle

Ten years later, we've come full circle

Ten years later, we've come full circle

Radio/X-rays Trace the Fastest Ejecta

Photosphere

 $v \sim 0.03c$ to 0.1c $E \sim 10^{51}$ erg

Fastest Ejecta

 $\mathbf{v} \sim \mathbf{0.1c}$ to $\Gamma \sim \mathbf{few}$

 $E \sim 10^{45}$ to 10^{51} erg

Strong X-ray/radio from: **central engine** (GRBs) and/or **dense CSM** (SNe IIn).

Radio limits on Hybrid SNe

Radio peak time:

SNe Ibc ~ 30 days SNe IIn ~ 2 yrs

Hybrid SNe:

Observations are poorly timed, shallow, and sparse

VLA June 1 2007:

Revisit old Hybrids and TOO for new ones (PI Soderberg)

Host Galaxies of Hybrid SNe

SN 1999ERA = 13:17:16.37, DEC = -18:33:13.4

SN 1997cy

RA = 04:32:54.86, DEC = -61:42:57.5

SN 2005gj RA: 03:01:11.95 Dec: -00:33:13.9 (J2000)

Star 1 (17 mag) RA: 03:01:12.68 Dec: -00:33:28.94 (J2000)

Star 1 -> SN 11.43" W, 15.6" N

Host Galaxy Spectroscopy:

all 4 are Anonymous hosts

(Soderberg et al., in prep) (Aldering et al., 2006)

Comparison to SNe la Hosts

(Gallagher et al., 2005)

Hybrid hosts are at the **low end** of the distributions for metallicity and $H\alpha$ luminosity (proxy for SFR) of SNe Ia.

Comparison to SNe la Hosts

(Gallagher et al., 2005)

Hybrid hosts are at the **low end** of the distributions for metallicity and $H\alpha$ luminosity (proxy for SFR) of SNe Ia.

Comparison to SNe Ibc Hosts

Host metallicity, luminosity lower than targeted lbc,

SFRs **comparable** to lbc, **lower** than those of GRBs

→ GRBs? NO. (Need to quantify selection bias)

TABLE 6
Derived Properties of Host Galaxies of 9N Ic (broad) at 9N Position if Different from Nucleus

SIN	Host Galaxy	M _B [mag]	log(O/H)+12 KD02 ^A	log(O/H)+12 PP(N ^a	$rac{L({ m H}lpha)^{h}}{[10^{40}~{ m erg~s}^{-1}]}$	9FR ^b [M⊙yr ⁻¹]	ur_a]	E(B-V) [mag]
SN 1997dq	NGC3810	-20.1	9.00	8.70				
SN 1997ef SN 1998ey	UGC4107 NGC7080	-20.1 -21.8		8.69 8.894	0.92 > 0.31	0.07 > 0.03	78	0.24 0.28
9N 2002ap 9N 2003bg	M74 MCG-05-10-15	$-20.6 \\ -17.5$		8.61° 8.6°				
$9N\ 2008jd$	MCG-01-59-21	-20.8	8.59	8.39	0.88	0.07	119	0.14
SN 2005bf	MGG+00-27-005	-21.6	8.98	8.79	1.03	0.08	< 10	0.34

^{*} Extinction-corrected oxygen abundances derived using either the calibrations of Kewley & Dopita (2002, KD02) or of Pettini & Pagel (2004, PP04). See § 4.2 for details.

(Modjaz et al., 2007)

^b Extinction-connected values. Lower limits are indicated if they could not be extinction connected (when H \(\text{f}\) could not be observed).
^c Extrapolated using nuclear coygen abundances from Table 5 and assuming standard metallicity gradient. See text for details.

⁴ Oxygen abundance computed using the NII/He method.

Reference: J. Moustakas et al., in purp. See text for details.

Comparison to SNe Ibc Hosts

Host metallicity, luminosity lower than targeted lbc,

SFRs **comparable** to lbc, lower than those of GRBs

→ GRBs? NO. (Need to quantify selection bias)

TABLE 6 Derived Profession of Host Galaxies of 9N Ic (eroad) at 9N Position if Different from Nucleus

SIN	Host Galaxy	M _B [mag]	log(O/H)+12 KD02 ^A	log(O/H)+12 PP(N ^a	$rac{L({ m H}lpha)^{h}}{[10^{40}~{ m erg~s}^{-1}]}$	9FR ^b [M⊙yr ⁻¹]	ur_a]	E(B-V) [mag]
SN 1997dq	NGC3810	-20.1	9.00	8.70				
SN 1997ef SN 1998ey	UGC4107 NGC7080	-20.1 -21.8		8.69 8.894	0.92 > 0.31	0.07 > 0.03	78	0.24 0.28
9N 2002ap 9N 2003bg	M74 MCG-05-10-15	$-20.6 \\ -17.5$		8.61° 8.6°				
$9N\ 2008jd$	MCG-01-59-21	-20.8	8.59	8.39	0.88	0.07	119	0.14
SN 2005bf	MGG+00-27-005	-21.6	8.98	8.79	1.03	0.08	< 10	0.34

Extinction-corrected oxygen abundances derived using either the calibrations of Kewley & Dopita (2002, KD02) or of Pettini & Pagel (2004, PP04). See § 4.2 for details.

(Modiaz et al., 2007)

b Extinction-corrected values. Lower limits are indicated if they could not be extinction corrected (when H\$\mathcal{g}\$ could not be observed). 6 Extrapolated using nuclear oxygen abundances from Table 5 and assuming standard metallicity gradient. See text for details.

^d Oxygen abundance computed using the NII/He method.

Reference: J. Moustakas et al., in purp. See text for details.

Comparison to SNe Ibc Hosts

Host metallicity, luminosity lower than targeted lbc,

SFRs **comparable** to lbc, **lower** than those of GRBs

→ GRBs? NO. (Need to quantify selection bias)

TABLE 6
IVED PROPERTIES OF HOST GALAXIES OF SN IC (BROAD) AT SN POSITION IF DIFFERENT FROM NUCLEUS

SIN	Host Galaxy	M_B	$_{\rm KD02^{\tiny a}}^{\rm log(O/H)+12}$	$_{\rm PP00^{A}}^{\log(O/H)+12}$	$rac{{ m L}({ m H}lpha)^{ m b}}{[10^{40}~{ m erg~s^{-1}}]}$	9FR ^b [M⊙yr ⁻¹]	me(SII)	E(B-V) [mag]
SN 1997dq SN 1997ef SN 1998ey SN 2002ap SN 2003bg SN 2003bd SN 2003bf	NGC8810 UGC4107 NGC7080 M74 MGC-05-10-15 MGG-01-59-21 MGG+00-27-005	-20.1 -20.1 -21.8 -20.6 -17.5 -20.8 -21.6	9.084 8.85° 8.8° 8.59	8.7° 8.69 8.89° 8.61° 8.6° 8.79	0.92 > 0.81 0.88 1.08	0.07 > 0.08 0.07 0.08	78 119 < 10	0.24 0.28 0.14 0.84

Extinction-corrected oxygen abundances derived using either the calibrations of Kewky & Dopita (2002, KD02) or of Pettini & Pagel (2004, PP04). See § 4.2 for details.

(Modjaz et al., 2007)

^b Extinction-corrected values. Lower limits are indicated if they could not be extinction corrected (when $H\beta$ could not be observed).

^c Extrapolated using nuclear oxygen abundances from Table 5 and assuming standard metallicity gradient. See text for details.

Oxygen abundance computed using the NII/He method.

Reference: J. Moustakas et al., in purp. See text for details.

Nothing: X-ray observations of SNe Ia

No detection with Chandra

No radio emission (Soderberg, 2005)

No Hα emission (Soderberg, Phillips)

Other sub-luminous SNe Ia show similar UV excess (M. Phillips)

→ We don't yet understand the UV spectra of SNe Ia

(Immler et al., 2006)

- Sample of 8 SNe Ia
- Only 2005ke showed a 3-σ X-ray bump (6" PSF) and UV excess
- attributed to CSI (thermal emission from RS)
- $M_{dot} \sim 3x10^{-6} M_{\odot}/yr$

Nothing: X-ray observations of SNe Ia

No detection with Chandra

No radio emission (Soderberg, 2005)

No Hα emission (Soderberg, Phillips)

Other sub-luminous SNe Ia show similar UV excess (M. Phillips)

→ We don't yet understand the UV spectra of SNe Ia

(Immler et al., 2006)

- Sample of 8 SNe Ia
- Only 2005ke showed a 3-σ X-ray bump (6" PSF) and UV excess
- attributed to CSI (thermal emission from RS)
- $M_{dot} \sim 3x10^{-6} M_{\odot}/yr$

Radio observations of "normal" SNe Ia: constraints on SDs (massive companions)

Assumptions:

- SN lbc light-curve (SN1983N)
- Free-free absorption dominates
- wind density profile
- $v_w = 10 \text{ km/s}$
- M_{dot} < $3x10^{-8}$ M_{\odot}/yr

Radio observations of "normal" SNe Ia:

constraints on SDs (massive companions)

Panagia et al., 2006

Assumptions:

- SN Ibc light-curve (SN1983N)
- Free-free absorption dominates
- wind density profile
- $v_w = 10 \text{ km/s}$
- M_{dot} < $3x10^{-8}$ M_{\odot}/yr

Radio observations of "normal" SNe Ia:

constraints on SDs (massive companions)

Assumptions:

- SN Ibc light-curve (SN1983N)
- Free-free absorption dominates
- wind density profile
- $v_w = 10 \text{ km/s}$
- M_{dot} < $3x10^{-8}$ M_{\odot}/yr

(Soderberg, 2006, ATEL 728)

Radio observations of "normal" SNe Ia:

constraints on SDs (massive companions)

Panagia et al., 2006

Assumptions:

- SN Ibc light-curve (SN1983N)
- Free-free absorption dominates
- wind density profile
- $v_w = 10 \text{ km/s}$
- M_{dot} < $3x10^{-8}$ M_{\odot}/yr

Assume SNe Ia like SNe Ibc (Chevalier)

Stripped-envelope explosion in low density environment

SNe Ibc dominated by **SSA** (Chevalier, 98; Berger 2002; Soderberg 2005, 2006)

- → Expect (and observe) V^{2.5} spectrum (external FFA → steeper spectrum)
- \rightarrow Assume **equipartition** of energy in electrons (ϵ_e) and magnetic fields (ϵ_B)

$$r \propto L_p^{8/17} \, \nu_p^{-33/34}$$

$$E_{tot} \propto \, L_p^{\,20/17} \, \nu_p^{\,-40/34}$$

$$M_{dot}/v_w \propto \ L_p^{-4/17} \ \nu_p^{59/34} \ t_p^{\ 2} \epsilon_B^{-1}$$

(Soderberg et al, 2006, ApJ,)

Extracting Physical Parameters

The temporal and spectral evolution of the radio light-curves enables us to trace the **post-shock energy density**, **radius**, **magnetic field**, **CSM density**

X-ray observations may additionally constrain **density** and $\epsilon_{\rm e}/\epsilon_{\rm B}$

Extracting Physical Parameters

The temporal and spectral evolution of the radio light-curves enables us to trace the **post-shock energy density**, **radius**, **magnetic field**, **CSM density**

This analysis requires observations of radio peak!

I have assumed:

- SN lbc light-curve
- $v_w = 10 \text{ km/s}$
- wind density profile
- equipartition $(\epsilon_e = \epsilon_B)$
- $\varepsilon_{\rm B} = 0.1$
- $v_s \sim 0.03-0.1c$

 M_{dot} < few x 10⁻⁸ M_{\odot} /yr

I have assumed:

- SN lbc light-curve
- $v_w = 10 \text{ km/s}$
- wind density profile
- equipartition $(\epsilon_e = \epsilon_B)$
- $\varepsilon_{\rm B} = 0.1$
- $v_s \sim 0.03-0.1c$

 $M_{dot} < few x 10^{-8} M_{\odot}/yr$

I have assumed:

- SN lbc light-curve
- $v_w = 10 \text{ km/s}$
- wind density profile
- equipartition $(\varepsilon_e = \varepsilon_B)$
- $\varepsilon_{\rm B} = 0.1$
- $v_s \sim 0.03-0.1c$

 M_{dot} < few x 10⁻⁸ M_{\odot} /yr

I have assumed:

- SN lbc light-curve
- $v_w = 10 \text{ km/s}$
- wind density profile
- equipartition $(\epsilon_e = \epsilon_B)$
- $\varepsilon_{\rm B} = 0.1$
- $v_s \sim 0.03-0.1c$

 $M_{dot} < few \times 10^{-8} M_{\odot}/yr$

The Future: 10x Sensitivity with EVLA (2008)

Use my SNe Ibc radio sample for la predictions. We will see sub-luminous SNe Ibc (e.g. 2002ap) out to the Virgo cluster.

The Future: 10x Sensitivity with EVLA (2008)

Use my SNe Ibc radio sample for la predictions. We will see sub-luminous SNe Ibc (e.g. 2002ap) out to the Virgo cluster.

Looking Forward, Making progress

- Hybrid SNe require blind surveys for their discovery (SDSS, PS1, LSST)
- Hybrid hosts may be different than the bulk population of SNe Ia hosts.
- Radio observations can probe any engine-driven material (VLA)
- X-ray and radio observations of normal SNe Ia are important programs to search for CSI
- BUT use caution when interpreting the data

