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Turbulent deflagration
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Turbulent deflagration

»  most parts of the SN Ia explosion: turbulence does not penetrate internal flame
structure: flamelet regime of turbulent combustion

1
St V| (Damkdhler 1940)

» in very late stages: turbulence may affect burning microphysics — onset of distributed
burning regime
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Numerical Implementation I

»  Large Eddy Simulation (LES) approach
»  Subgrid-scale turbulence model (Niemeyer et al., 1995; Schmidt et al., 2005)
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Numerical Implementation II

M. Reinecke

. {r1G(,n)=0} Y

9C _(v.n+s)|VG)
Py
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»  flame propagation via Level Set Method
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Numerical Implementation II

seen from scales of WD: flame is discontinuity between fuel and ashes
flame propagation via Level Set Method

M. Reinecke

associate flame front with

. {r1G@,)=0} /

distance function G,

G<0 in fuel, G>0 in ashes
equation of motion:

0G

—=(v,n+s,)| VG|
Jt

simplified description of burning: everything behind G=0 isosurface is nuclear ash;
depending on fuel density at burning: intermediate mass elements (*Mg”) or NSE

(mixture of “Ni” and “He)
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high-resolution model, improved subgrid-scale turbulence model, new burning law,
multi-spot ignition:

» 10243 computational cells, 500.000 CPU hours on IBM regatta
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Turbulence on resolved scales

»  Spectrum normalized to Kolmogorov scaling (Schmidt et al. in prep., Ropke et al., subm.)
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»  Turbulence following Kolmogorov scaling found on resolved scales ! LES ansatz

justified
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»  asymptotic kinetic energy: 0.81 foe
»  hydro: 0.61 M- of irg_n group elements,
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with ~150 000 tra
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Successes

»  vyields explosion
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Successes
»  vyields explosion

Shortcomings

»  based on fundamen
principles

»  no tunable paramet
initial conditions (flam
configuration)

(>0.7 M- of 56Ni)

composition of outer layers in
brighter SNe Ia

»  reasonable agreement
examples of normal

»  do not reproduce brighter SNe Ia

isagreement with those expected

- Questions

» Do pure deflagrations account for a sub-class of SNe Ia (Phillips et al., 2006)?

» Do they represent the first (and for some objects dominant) building block of
an extended model?




Off-center ignition model

Motivation:

> pre-igntion convection may cause
dipole flow (Kuhlen et al. 2006)
| lop-sided ignition?

Outflowing

Kuhlen et al. 2006

»  conceivable initial flame configurations: sphere (Calder et al., 2004), perturbed sphere,
perturbed teardrop-like shape, two-sided configurations (Ropke et al. 2007, ApJ in print:
~20 2D simulations, 6 3D simulations testing the parameter space)
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GCD scenario (Plewa et al., 2004): colliding ash compresses fuel material at the
surface of the WD and triggers detonation

analysis of conditions in collision region (Répke et al., 2007 ApJ in print):

deciding parameter: energy release in deflagration phase ! depends on ignition
location/shape and flame model (!)

I GCD possible, but conditions for detonation only reached in specially tuned 2D
simulations, no detonation found in 3D simulations

I GCD not a robust mechanism for SNe Ia, if working would produce very bright
events




Delayed detonation model

Gamezo et al. 2005
transition (DDT) to detonation

after deflagration phase
(Khokhlov, 1991)

supersonic detonation front
burns parts of remaining
fuel
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»  DDT mechanism unknown in astrophysical context (e.g. Niemeyer 1999, Oran & Gamezo, 2006)

Ropke & Niemeyer, 2007




in astrophysical context (e.g. Niemeyer 1999, Oran & Gamezo, 2006)

detonation even tiny regions of (Maier & Niemeyer 2006) ! pockets of unburnt
material may remain, needs to burn around complicated deflagration structure
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in astrophysical context (e.g. Niemeyer 1999, Oran & Gamezo, 2006)

detonation even tiny regions of (Maier & Niemeyer 2006) ! pockets of unburnt
material may remain, needs to burn around complicated deflagration structure

does it reach far side when triggered off-center?

Ropke & Niemeyer, 2007

Parametrizations (in 3D simulations):

position and time for DDT (Gamezo et al. 2005)
DDT once deflagration flame enters (Golombeck & Niemeyer 2005)







Delayed detonation model

»  varying the number of ignition kernels of the deflagration flame shifts emphasis from
deflagration to detonation phase

»  elegant way to reproduce range of observations of SNe Ia (Ropke & Niemeyer, 2007)

ignition
configuration

Ekin,asympt

[foe]
M(NSE) [M-] BRE

M(IME) [M-] KX
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Deflagration-to-Detonation Transitions?

»  Niemeyer & Woosley (1997) hypothesis: DDT at onset of distributed burning regime
» only instance of drastic change in flame properties

TABLE 1

Livoting THRESHOLD FOR TURBULENT VELOCITY /(L) AT
GIven
DEeNsITY AND FurL COMPOSITION

w(L) p
(ems™Y) (x10" gem™9) X0 X(**0)

>0.5 x 10" 23 0.5 0.5
>0.6 x 10" 13 0.5 0.5
0.8 0.5 0.5
> 0.25 x 10° 23 0.75 0.25
>0.3 x 10° 1.3 0.75 0.25
0.8 0.75 0.25
23 0.25 0.75
1.3 0.25 0.75
0.8 0.25 0.75
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occurs at pg, ~ 107 g cm=3 | for this transition density best fits obtained in one-
dimensional delayed detonation models

TABLE 1

. LvirinGg  THRESHOLD TurBuLENT VELOCITY /(L
analysis by ¢ roR Tumr L) AT

Lisewski et al.(2000): claim DensITY AND FUEL COMPOSITION

w(L) p
(ems™Y) (x10" gem™9) X0 X(**0)

>0.5 x 10" 23 0.5 0.5
>0.6 x 10" 13 0.5 0.5
0.8 0.5 0.5
> 0.25 x 10° 23 0.75 0.25
>0.3 x 10° 1.3 0.75 0.25
0.8 0.75 0.25
23 0.25 0.75
1.3 0.25 0.75
0.8 0.25 0.75

»  needs updated analysis
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Deflagration-to-Detonation Transitions?

Niemeyer & Woosley (1997) hypothesis: DDT at onset of distributed burning regime
only instance of drastic change in flame properties

occurs at pg, ~ 107 g cm=3 | for this transition density best fits obtained in one-
dimensional delayed detonation models

TABLE 1

. LvirinGg  THRESHOLD TurBuLENT VELOCITY /(L
analysis by ¢ roR Tumr L) AT

Lisewski et al.(2000): claim DensITY AND FUEL COMPOSITION

w(L) p
(ems™Y) (x10" gem™9) X0 X(**0)

>0.5 x 10" 23 0.5 0.5
>0.6 x 10" 13 0.5 0.5
0.8 0.5 0.5
> 0.25 x 10° 23 0.75 0.25
>0.3 x 10° 1.3 0.75 0.25
0.8 0.75 0.25
23 0.25 0.75
1.3 0.25 0.75
0.8 0.25 0.75

»  needs updated analysis
> necessary but not sufficient conditions for DDT ! met in SN Ia models?
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Analysis of turbulent
velocity flucutations
as predicted by
sub-grid scale model
at the flame front

for densities
1...3 £ 107 gcm3

(Ropke, in prep.)




Deflagration-to-Detonation Transitions?

»  High-amplitude turbulent velocity fluctuarions (~108 cm s1) occur at the onset of
distributed burning regime on sufficiently large area of flame (~1012 cm?)
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Speculation on the overall picture

"Zorro diagram”
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Speculation on the overall picture

"Zorro diagram”
(Mazzali et al., 2007)
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Speculation on the overall picture

"Zorro diagram”
(Mazzali et al., 2007)

weak normal SNe Ia
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Speculation on the overall picture

"Zorro diagram”
(Mazzali et al., 2007)
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Speculation on the overall picture

"Zorro diagram”
(Mazzali et al., 2007)

weak normal SNe Ia

deflagrations or
deflagration phase dominant
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Speculation on the overall picture

"Zorro diagram”
(Mazzali et al., 2007)
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Speculation on the overall picture

"Zorro diagram”
(Mazzali et al., 2007)

weak normal SNe Ia

deflagrations or
deflagration phase dominant

bright SNe Ia
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Speculation on the overall picture

"Zorro diagram”
(Mazzali et al., 2007)

weak normal SNe Ia
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bright SNe Ia
delayed detonations

0.5

i
=
e
7]
]
o
=
ﬁ
@
W
L
Q
=]
)

KITP 07, 3/22/2006 Friedrich Ropke, UCSC and MPA
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Speculation on the overall picture

x M(IME)
"Zorro diagram" f Egﬁ?})_

(Mazzali et al., 2007) O M(%Fe)

weak normal SNe Ia
deflagrations or
deflagration phase dominant

bright SNe Ia
delayed detonations
for brightes examples:

enclosed mass [M]

o
o

detonation phase dominant

sub-luminous: ???
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