Hypernovae and GRBs

Paolo A. Mazzali

Max-Planck Institut für Astrophysik, Garching

2003jd

1998bw

Astronomy Department and RESearch Centre for the Early Universe, University of Tokyo

Istituto Naz. di Astrofisica, OATs

東京

Type labc Spectra

SN Ic: no H, no strong He, no strong Si

Hypernovae: broad features, blended lines "Large mass at high velocities"

Core-Collapse SNe

Massive Star (> $8M_{\odot}$)

- Si burning \rightarrow NSE \rightarrow ⁵⁶Ni (~0.1-1M_{\odot})
- Core collapse
- Compact object (NS/BH)
- V emission
- KE deposited
- envelope ejection

A "typical" (?) SN Ic: SN1994I

- Fit spectrum with a classical model:
- Mej ~ 1 Mo, KE~10⁵¹ erg (1 foe)
- Abundances dominated by O, Si
- M(⁵⁶Ni) ~ 0.1 M⊙

Sauer et al. 2006

21 Mar 2007

Prelude: KITP, Nov. 1997

A broad-lined SN C: **SN1997ef** A classical model: Model CO60 KE = 1 foe $M_{ej} = 6 M_{\odot}$.:. Too little mass at high velocity 21 Mar 2007

The smoking gun GRB980425: the optical counterpart

21 Mar 2007

A Type Ic SN: 1998bw

SN1998bw was a <u>very bright</u> Type Ic SN, with <u>very broad absorption lines</u>, indicative of <u>high-velocity ejecta (~0.1c)</u>, and of <u>a very energetic explosion</u>

21 Mar 2007

<u>Classic' SN Ic vs. Hypernova' model</u>

Ek may not be unique

 $\frac{\text{Model CO60} (1 \text{ foe}):}{M(CO) = 6M_{\odot}}$

Model CO110 (8 foe):
$$M(CO) = 10 M_{\odot}$$

both:

$$M(^{56}Ni) = 0.15M_{\odot}$$

Iwamoto et al. 2000

21 Mar 2007

SN 1997ef early-time spectra

A hypernova model: CO100

KE = 20 foe Mej = 8 M⊙

Mazzali et al. 2000

21 Mar 2007

Determining the properties of SN 1998bw

Light curves can be degenerate if both M and E are allowed to vary

au LC

21 Mar 2007

Photospheric velocity useful to distinguish between models

 4×10^4

SN 1998bw

Late-time spectra of SNe

Ejecta are thin:
"Nebular Epoch"
Gas heated by deposition œf ∳'s and
cooled by forbidden line emission

Spectrum: no continuum.

Emission line profiles depend on velocity, abundance distribution.

Homologous expansion, homogenous density and abundance: parabolic profiles

21 Mar 2007

Was SN 2003jd also a GRB/HN?

- X-ray and Early Radio upper limits are not in contradiction with a GRB viewed off-axis
- Later Radio upper limits (Soderberg et al 2005) indicate no jet

<u>The Confirmation:</u> <u>GRB030329</u> / <u>SN2003dh</u> (HN)

Z = 0.167

SN 2003dh: the light curve

SN 2003dh is somewhat dimmer than SN 1988bw, but much brighter than both SNe 1997ef and 2002ap

Mazzali et al. 2003

21 Mar 2007

SN 2003dh: another Hypernova

SN 2003dh is almost as bright and powerful as SN 1998bw:

KE = 3.8 10^{52} erg $M(^{56}Ni) \sim 0.35 M_{\odot}$ $M_{ej} \sim 8 M_{\odot}$

Mazzali et al. 2003

21 Mar 2007

<u>GRB031202</u> / <u>SN2003lw (HN)</u>

Highly reddened, but a close analogue of SN1998bw

With GRB031202/SN2003Iw, ALL 3 nearest GRBs are Hypernovae

Malesani et al. 2004

SN2003lw: the Light Curve

The most powerful HN E_K~ 60 foe Mej ~ 13M⊙ M(⁵⁶Ni)~0.6M⊙

SNe & GRBs, KITP

Type Ic SNe / Hypernovae

SNe/HNe Ic near maximum

21 Mar 2007

 $M(^{56}Ni) \propto M_{MS}$

 $KE \propto M_{MS}$

21 Mar 2007

<u>3 HNe/GRB</u>

Same SN properties, but very different X-ray light curves (and radio properties)

→ What is the diagnostic value?

Radio Properties of SNe lbc

Most HNe show no radio (Soderberg et al 2005)

Either no jet, or a low-density environment (wind)

21 Mar 2007

Another KITP hit XRF060218/SN2006aj

z=0.033 SN2006aj was dimmer than other GRB/SNe (98bw, 03dh, 03lw)

Light curve similar to non-GRB broad-lined SN Ic 2002ap, but brighter ;

M(⁵⁶Ni) ~ 0.2M⊙

Rapid LC evolution: → Mej³/E is small

21 Mar 2007

An Oxygen-poor SNIc (lc/d?)

Closest match is the broad-lined, non-GRB SN2002ap, more than the "traditional" HN SN1998bw

OI line (7300Å) weak or absent

Testing for Oxygen

A Model with similar O content as SNe 1998bw and SN 2002ap has strong OI 7774Å line.

A model with ½ the mass of SN 2002ap (and less O) is a better fit.

21 Mar 2007

SN2006aj: Spectral modelling

Model similar to that used for SN2002ap, but with smaller M*ej*, KE, more ⁵⁶Ni, less O.

O-dominated shell (~0.1M $_{\odot}$) at 20-25,000 km/s: shell ejection from progenitor? $M_{ej} \sim 2M_{\odot}$ $M(^{56}Ni) \sim 0.21M_{\odot}$ $E_K \sim 2 \times 10^{51} \,\mathrm{erg}$ Mazzali et al. (2006), Nature

21 Mar 2007

Evolution of photospheric velocity from spectral modelling

- SN2006aj never reached velocities as high as the GRB/SNe
- It is intermediate between non-GRB, broad-lined SNe Ic such as SN2002ap and SN1997ef, and GRB/SNe

Pian et al. (2006), Nature

21 Mar 2007

SN 2006aj: a Light Curve model

Explosion model gives a LC consistent with results of spectral fitting

Mazzali et al. (2006), Nature

SN2006aj: nebular spectra

- Strong [OI] line
- Low O mass (1.3M₀)
- Small Mej (2M₀)
- No sign of major asphericity

Properties of SN2006aj

- SN 2006aj exploded as a CO core (a WR star) of ~3.3 M_☉.
- The ejecta (~2M_☉) consisted of O (~1.3M_☉), and heavier elements (~ 0.5M_☉), incl. ~ 0.2M_☉ of ⁵⁶Ni.
- →The progenitor of SN 2006aj was a small mass star (M_{ZAMS} ~ 20 M_☉).
- Remnant was a NS (M ~ 1.4 M_{\odot}).
- Magnetic activity induced the XRF (Magnetar)

Placing SN2006aj in context

A neutron star-making SN

Properties of Type Ib/c Super/Hypernovae

SN	83N	941	06aj	02ap	97ef/dq	98bw
type	lb	lc	lc-en	Ic (Hypernovae)		
MZAMS	15	15	20	21	34	40
M _{He}	4	4	5.5	6.6	13	16
M _{CO}	2	2	3.3	4.5	11	14
M _{Expl}	4	2.1	3.3	4.6	11.1	13.8
M _{Rem}	1.25	1.2	1.4 NS	2.1	1.6	2.9
M _{Ej}	2.75	0.9	2.0	2.5	9.5	10.9
M _{He}	2.0			0.1		
M _{co}	0.5	0.6	1.4	1.8	5.3	8
M _{IME(Si,S)}	0.1	0.2	0.4	0.5	4	2
M _{Ni}	0.15	0.07	0.2	0.1	0.13	0.7
E ₅₁	1	1	2	5	19	50
GRB	X	X	√ (XRF)	X	Х	\checkmark

21 Mar 2007

Hypotheses, future checks

- Magnetar activity may have been responsible for the high energy transient
 - \rightarrow possible rebrightenings
- Asymmetries, orientation TBD when nebular spectra available

 expect [O I] 6300,6363Å emission to be weak w/r to Fe and broad

The Grand Scheme

- Collapse of very massive (~35-50 M_☉), stripped stars to Black hole makes GRB-HN (GRB can be very different, HN much less).
- Collapse of less massive star (~ 20 M_{\odot}) to NS can cause an XRF (via magnetic activity ?).
- Some of these NS may later (when spin is lower) harbour some short-hard GRBs (SGRs).
- If system is a close binary (possibly necessary for mass loss) it may end as a NS-NS merger and again produce a short-hard GRB.

Debates

- Are ALL long GRB SNe?
- Are all GRBs similar (viewing angle effect) or are they really very different?
- How do GRBs and XRF relate?
- What are the progenitors?
- Cosmological use....???

誕生日おめでとう、憲一

