Stellar evolution update for $<8M_{\odot}$ [and implications for accreting WD] and maximum mass that makes a White Dwarf

Falk Herwig

Keele University, UK JINA

Initial mass and evolutionary outcome for intermediate mass stars

Herwig 2005, ARAA 43, 435

Slide 2

 M_{ZAMS} = $5M_{\odot}$ -> massive AGB star \rightarrow N,O-rich giant star Poelarends etal (2007) CO white dwarf

 M_{ZAMS} = $16M_{\odot}$ -> massive star -> Fe core-collapse Poelarends etal (2007)

 M_{ZAMS} = 11.5 M_{\odot} -> super-AGB star Poelarends etal (2007)

ONe white dwarf

e-capture corecollapse supernova

- •Mass loss: How much time is there to grow the core to CC?
- ·How fast does the core grow?
 - Dredge-up: depends on convection and nuclear physics
 - Hot-bottom burning: depends on convection

One of the sources of uncertainty:

Hot-bottom burning: depends on convection

Depending on convection parameters one might encounter a stationary shell-burning without effective core growth at all.

Some super-AGB evolution results

(Poelarends, Langer, Herwig, Heger)

Initial-final mass relation for Z=0.02

Poelarends et al 2007a, submitted

19 Mar 2007

Evolutionary outcome according to synthetic model as a function of metalicity and mass

Poelarends et al 2007b, in prep.

Related work by Ritossa etal. 1996, Siess 2006, Garcia-Berro etal. 1997, Iben etal 1997

Slide 8

Evolution of single intermediate mass stars from the main sequence to the white dwarf stage

Evolution of burning H- and He-shell and convection zones

Slide 10

Some well-known properties of AGB stellar evolution

Linear core-mass luminosity relation

For most of the time the AGB star is quiescently burning H:

 $M'_H = L_{Hyd} / X_H Q$

 L_{hyd} : H-shell burning

luminosity

X_H: H-mass fraction

Q: energy released per

mass unit

This one is from Mowlavi 1995, but there are as many as people who have ever run an AGB stellar evolution model.

Some well-known properties of AGB stellar evolution

Core-mass inter-pulse relation and core-mass He-flash duration relation

Envelope mass for post-AGB tracks: M_{env} determines the position of the star on the post-AGB track

$$M'_{env} = -M'_{nuc} - M'_{wind}$$

M'wind: Radiatively driven wind of Pauldrach (1988) -> mass loss (following Bloecker 1995b)

$$\dot{M}_{\rm CPN} = 1.3 \cdot 10^{-15} \, L^{1.9}$$

M'_{nuc}: follows from the core-mass luminosity relation

Schoenberner 1981, Bloecker 1995b

Wind mass loss for post-AGB / hot WD (rad. driven) and AGBs (ra./dust driven)

$$M_{WD}$$
=1.0 M_{\odot}

The radiative wind mass loss M'_{wind} is a substantial fraction of the nuclear burn rate M'_{nuc} . For large M_{WD} : $M'_{wind} > M'_{nuc}$!

Single post-AGB to WD evolution

On the horizontal L=const part of the track L=L_{hyd}

At the 'knee' M_{env} too small to support H-shell, L_{hyd} drops

Tiny He-shell!

He-shell flashes in post-AGB / hot WD single stars are as common phenomenon in stellar evolution

Some well-known properties of post-AGB stellar evolution

Young WD make He-shell flashes: born-again evolution

Fig. 1. Continuum-subtracted O^{2+} image showing the extended planetary nebula. Radio (8.6 GHz) contours are shown superposed at 30, 50, and 70 μ Jy per beam. A natural weighted map (beam of 4.2 \times 2.4 arc sec indicated by the oval) is shown. Scale bar, 10 arc sec. (Inset) An HST I-band (F814W) image taken 29 August 2001. Sakurai's object (fainter of the two components, 0.2 arc sec apart) is indicated by an arrow. The superposed radio data show a uniform weighted map (beam of 2.2 \times 1.3 arc sec, indicated by the oval) with contours at 25, 35, and 45 μ Jy per beam. The old planetary nebula is 41 arc sec in diameter; its brighter inner ring is 29 arc sec across. Scale bar, 2 arc sec.

Hadjuk et al, Science 2005

Envelope mass for post-AGB tracks: M_{env} determines the position of the star on the post-AGB track

$$M'_{env} = -M'_{nuc} - M'_{wind}$$

M'wind: Radiatively driven wind of Pauldrach (1988) -> mass loss (following Bloecker 1995b)

$$\dot{M}_{\mathrm{CPN}} = 1.3 \cdot 10^{-15} \, L^{1.9}$$

M'_{nuc}: follows from the core-mass luminosity relation

$$M'_{env} = -M'_{nuc} - M'_{wind} + M'_{acc}$$

Schoenberner 1981, Bloecker 1995b

Where are the accreting WD? $M'_{env}=0 \rightarrow -M'_{acc}=-M'_{nuc}-M'_{wind}$

Implications:

No matter how stable the H-burning is - accreting WD will make He shell flashes on their evolutionary path toward SNIa! (Cassisi, Iben, Tornambrè 1998).

These flashes are 'born-again' like, leading the star back to the AGB, inducing wind mass loss that will affect the further evolution.

Cassisi etal 1998

Depending on M'_{acc} (which determines the pre-He flash position on the post-AGB track) the He-flash may be of the H-ingestion kind (which is 10-100 times faster than the He-flash).

He-shell flashes on the post-AGB -> WD track, depending on $L_{\rm hyd}$ (which depends on $M_{\rm env}$ and thus on $T_{\rm eff}$)

Schönberner 1979, related work by Iben et al 1983, Iben & McDonald 1995, Herwig et al 1999

He-flashes will play an important role to determine the internal composition of the growing accreting WD:

Before post-AGB He-flash in single star: \times

During He-flash:

After He-flash, when the star is cool:

Transient H-deficiency, then quickly covered up by accreted material.

Herwig etal. 1997, Blöcker 2000

Falk Herwig

How many He-flashes will there be up to reaching M_{Chan} ?

 M'_{H} and t_{ip} from AGB core-mass relations:

$$N_{He-flash} = \int_{M_{ini}}^{M_{Chan}} \frac{1}{t_{ip}dM_H/dt} dM$$

Thousands! Many could be fast H-ingestion flashes. Wide range of light curves but this is a separate talk.

Final remarks

- The processes that enter quantitative predictions for the supernova rate from super AGB stars have been identified, but currently uncertainties remain high. There is indication for a higher supernova rate from this channel at lower metallicity.
- The single-degenerate path toward SNIa leads through a possibly very large numbers of He-shell flashes, no matter how stable H-shell burning is. In analogy to single star born-again events: rad./dust driven winds. In the downphase (interpulse): luminous O, B stars.
- Even hotter accreting WD at high L will have significant rad. M'_{wind} which adds to the required fine tuning of M'_{acc} .
- If several thousands, maybe 10.000s He-flashes scare you: astroph/0703453, Geoff Clayton etal: extreme excess of ¹⁸O - a case of a He-CO WD DD merger

