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Figure 5 Regimes of steady nuclear burning, weak flashes (cvelic burning), and strong flashes
(novae) in the M—Myp plane (cf Fujimoto 1982a.b, Nomoto 1982, DiStefano & Rappaport 1995).
The A My values indicate envelope masses (for a given accretion rate) at which burning 1s 1gnited.
Below the dash-dot line, flashes produce nova explosions.

> 1Msun White Dwarfs:

For steady burning on
the WD surface, the
mass-transfer rate should
be ~(1-4).10 Msun /yr.

At larger rates burning is
also steady, but X-rays
don’t come out.

For accretion rates

> 107 Msun lyr, the flashes
might be weak and
burned matter may
possibly be retained (?)
(But see Bildsten’s
Wednesday talk!).



Stellar Timescales

Nuclear Timescale: time to exhaust its hydrogen fuel:

M L 10 -2.5 X .
T, o 10‘°FO Toyr =10 M T yr (2) (M in solar units and > 1)

Thermal timescale: time to emit the star’s thermal energy content at its present Luminosity

2 2
According to the Virial theorem, Eth=- 0.5 Epot,grav ~ GM /R, so 1 ~ GM /RL

2
7, ~ 3.1x IOT(;?) R}? Lf’yr =3.1x 10/M2 yr 3)
o

Dynamical Timescale = Pulsational timescale = time to restore Hydrostatic Equilibrium
= R/c

sound

0.5

M 1/2 R 3/2 . )
74~ 0.04 (f) (R_o) days =50 min (pg  /p) (4)



Two possible ways for capturing matter from a companion

Roche-lobe overflow Stellar wind accretion

Some of the material orbiting the companion. .. The companion gives off a "wind" of material in all directions. ..

Compact object's Roche lobe
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http://upload.wikimedia.org/wikipedia/commons/4/44/RochePotential.jpg

M,/ M, =q

i The mean density of the Roche-lobe filling star is only
B = 100P™(h) gcm™

a function of the orbital period!

R, 0.494%3

- . (Eggleton’s formula ,1983; valid for all values of q)
a 0.6¢*F + In (1 + ¢'")




Simplest Case: total mass and total orbital angular momentum conserved
(in most cases rotational angular momentum of components much smaller than
orbital angular momentum (but not always!)) ; orbits are assumed circular

M,+ M, = constant, —_— M, = —M, (7)
Ga

Jo=MM = constant, 8

° TN M+ M, ®)

Combination of (7) and (8) gives:

a _J, ME)MZ
—=2—=2l1——}—. 9
a Jb ( M] Mg ( )

If J,= constant, then: since M, <0:if M,> M, , orbit shrinks, in opposite case it widens

ay M”MH)z
' 10
a; (fosz (10)
I = initial, f = final
Doy _ (M“Mﬁ)j (11)
Py, MM, '



Once the more massive star overflows its Roche lobe and transfers matter to its companion,
its Roche-lobe radius shrinks while its thermal equilibrium radius stays about the same; if it
has a radiative envelope the star temporally shrinks due to the mass loss, but it then expands
on a thermal timescale to restore its thermal equilibrium. As a result it continues to transfer
matter until it has become the less massive component of the system and further mass
transfer causes its Roche lobe to expand. The entire process takes ~ 1(thermal):

Mdot ~ 0.8M/T(thermal) ~ 0.8M>/(3.10") [Msun/yr]

—> for M 21.5Msun, Mdot = 10_7 Msun/yr

radius

main
sequence

Mmass



Porb = 1.04 days

Porb = 10.6 hours

0.5
Orbital Phase

() CAL 83
Strongly bright
X—Heated disk.

<— CAL 87

0.6-1.2 M 4
1.3-2.5 M g

Figure 3 (a) Optical light curves in the Johnson V-band of CAL 83 and CAL 87 plotted on the
same scale for comparison. The solid curves give the mean light curves. The upper light curve 1s
adapted from Smale et al (1988), the lower light curve from Schnmdtke et al (1993). () Schematic
model for explaining the optical light curves of CAL 83 and 87: The main light sources in the
systems are the very bright accretion disk and the X-ray heated side of the donor star. In CAL
87 the accretion disk 1s regularly eclipsed; CAL 83 is seen at low melination, such that only the
heating effect is observed [after van den Heuvel et al (1992): for a refined model, see S Schandl
et al (1996): see also section on The “Standard” CBSS].
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Figure 7 Optical light curve of RX J0513.9-6951 from August 22, 1992, to November 27, 1995,

obtained with the MACHO project. Downward and upward verfical arrows indicate times at which L L L
the system was known to be on (X) or off (NX) in X rays, respectively (from Southwell et al 1996b). N |
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Figure8 Average blue spectrum of RX J0513.9-6951. The principal He Il and H enussion features
are marked. alone with their associated Doppler-shifted components (from Southwell et al 1996b).
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Figure 11 Evolution of orbital period, white dwarf (WD) mass, and M of a CBSS with an initial
donor mass of 2.5 M and an nutial WD mass of 1 Mg, m which the mass-transfer rate 1s mostly
~107% Mgyear—! (from X Li, in preparation). Dashed lines: boundaries of the stable burning
region without radius expansion.  Transferred mass in excess of the max. rate for stable burning
is assumed to be ejected with specific orbital angular momentum of the WD



1. Wide Binary Exactly the same
evolutionary scenario
as for making CV-
binaries.

The only difference is
that here M2 is larger:
anywhere between

(large loss of mass
and angular momentum) ~1.5 and ~5 Msun

P, ~ weeks to years

2. Common Envelope Phase

t/\;_:,}’\@i:' 3. Post Spiral-in Binary
~ - Mg
Meore™0-8Mp P b = 0.5-1.0 days
TN \
(e ,’@ 4. Secondary evolves to fill
M, its Roche lobe. Unstable

mass transfer onto the
white dwarf commences
on a thermal timescale.

Figure 9 Evolutionary scenario for the formation of a close binary supersoft X-ray source (cf
text; from Rappaport & DiStefano 1996).



Non-conservative Evolution: losses of mass
and orbital angular momentum from the system.

A lost mass element is a “third body” in the system.
As there is no general analytic solution of the 3-body
problem, there is no general solution for this case.

Approach: prescribe a “mode of mass and orbital
angular momentum loss” and calculate how this
“‘mode” causes the orbit to change.

For a general “cookbook” of non-conservative “modes” and their results: see
Soberman, Phinney and vdH, 1997, A&A, 327, 620-635.



Simplest case: No mass loss from the system
Only loss of orbital angular momentum, due to:

-Gravitational radiation losses
and/or
-“Magnetic Braking”

The latter means: rotational braking of a solar-type star (with convective en-
velope) due to a magnetically coupled stellar wind (Verbunt and Zwaan 1981)

Solar corona magnetically co-rotates with Sun out to ~ 10Rsun causing the
solar wind to carry off rotational angular momentum (but negligible mass).

Young G-stars in the Pleiades (~ 70 million years) rotate ~ 22 km/s and in
Hyades (700 million yrs) rotate ~ 8 km/s. Sun (4.6 billion yrs) rotates 2 km/s.
From this one can empirically estimate the slowdown torque Tmb as a function
of w(rot) for solar type stars (Skumanich,1972).



a
—=2——=2l1——]—=. 9
a Jy ( MI)ME ©)

1
RL /a = 0.4622 (M ,/(M, + |v|2)) & —_— dRL/RL = da/a + 1/3 (dM2/M2)

Substitution of the latter into eq. (9) yields:

RLdot/RL = 2 Jbdot/Jb — 2 (5/6 — M2/M1)(M2dot/M2)

For a detailed treatment of mass transfer in X-ray Binaries: see Verbunt,
Annual Rev. A&A, 1993, which we largely follow here



Relation between Orbital Period and Donor Mass (From Verbunt,1993, Annual Rev.)

By combining Kepler's law with Equation 6, we get an approximate
relation between orbital period and the mass and radius of the Roche-
lobe-filling star:

R,V (M

3/2 1/2
P, ~89hr| -2 ——-9) . N 25
¥ I(HO) (Mz () p2/2 )

Table 2 Mass-radius relations and derived mass-orbital-period relations
for low-mass X-ray binaries® and CV binaries

Main sequence RyRy = My/M P, = 89 hr M,/M
He main sequence R,/R, = 0.2M,/M P, = 0.8%hr M,/M_
White dwarf RyRy = 0.0115(M /M) "3 P, = 40s M /M,

*Valid for donors in thermal equilibrium.

The chang;: in radius of the donor star may be due to internal evolution
of the star, or to the mass-transfer process. We may thus write

R, _ (R, dinR, M, _,J M:(S M, Assume: R, =K M.
oL (22 _9Y _ 2 ;
Ry (Rz):v tamM, M, T EMI 6 M,) (26) 2 2

This equation shows that mass transfer may be driven by loss of angular
momentum from the binary (J < 0), or by expansion of the donor star
(R; > 0) due to, for example, the ascent of the donor on the (sub)giant

branch, or due to irradiation of the donor. We discuss these possibilities
in turn.



It was realized by Kraft et al (1962) that gravitational radiation provides
a sufficiently high loss of angular momentum to drive observable mass
transfer in a close binary. The loss of angular momentum via gravitational
radiation may be written (Landau & Lifshitz 1962):

J\ 326G MMM, + M) o
J GR B 565 .‘.‘I4 ]

If we write the mass-radius relation of the donor star as R, oc M, Equation
26 can be rewritten as

J M,(5 n M,
_}__E(FLE_E)‘ )

This equation assumes that no mass is lost from the binary; extension to
the more general case is straightforward (see Equation 14).

To estimate the importance of braking in the evolution of low-mass X-
ray binaries, Verbunt & Zwaan (1981) parametrized the angular momen-
tum loss J,;, from single G-stars, assuming that the magnetic field strength
and the stellar wind depend on mass, radius, and rotation velocity only.
By applying this to a main-sequence donor in a binary, they find:

oo —38x 107 REI(M, + M) Ror?
Jb - Mlﬂl

(29)



Purely Gravit.
Radiation-driven

mass transfer
(Verbunt 1993)

Holds for LMXBs
and CV binaries
alike
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Observed mass transfer rates in CVs are ~ 10 to 100 times higher than
GR alone can give (the same holds for the LMXBS)

Patter-
son (1983) gives an approximate mean relation for this
correlation:

M=6x10"12 (P, /1he) 20 M yr!, (41)

which holds for orbital periods outside the 2-3 hr
period gap. The spread of observed values for .4 about
this relation is about a factor of 5.

With this formula, a system with Porb ~ 8 hours has Mdot ~ 6.10° Msun yr



Magnetic Braking

MAGNETIC BRAKING @ R?

RAPPAPORT, VERBUNT, AND JOSS Ap.J. 275,713, 1983
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Fis. 2.—Caleculated evolution with continuous ma%n-:uc braking given by equation (36) with ¥ = 4: model CMB 4. The initial parameters
of this system are # =12 M, M =10 M, P,,, = 7", and (X, Y, Z)= (0.70, 0.28, 0.02). Alexander (1975, 1980) opacities without grains
{see RIW) were assumed, and gravitational radiation losses were included in all models. Several of the binary system parameters (the mass,
M. and radius, R, of the secondary, the orbital period, F,,,. and the mass accretion rate onto the primary, .#) are shown in the left-hand
panel as functions of elapsed time from the start of the evolution. The evolution of some additional parameters of the secondary [its effective
temperature, T, fractional luminosity deficit, (L — L_,.)/L, stellar index, { = { M /R)(dR /dM), and ratio, D, of total to ideal gas pressure
in the convective envelope] are shown in the right-hand panel (see text and RJW for explanations of the significance of these parameters).

F1G. 3.—Calculated evolution with continuous magnetic braking given by equation (36) with y = 2: model CMB 2. Cﬂmpa_re-:i to model
CMB 4 (with y = 4), this assumed braking law provides a relatively high magnetic braking rate when the radius of the scmndar},r is small. The
input physics and initial parameter values are otherwise the same as in model CMB 4, and the notation is the same as in Fig. 2.
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F1G. 4 —Calculated evolution with magnetic braking, given by eq. (36) with y = 2, only while the secondary retains its radiative core:
model MBR 2. When the radiative core of the secondary vanishes, at an elapsed time of ~ 210" yr, the magnetic braking is stopped (sce §
I1£). The input physics and initial parameter values are otherwise the same as in model CMB 2, and the notation is the same as in Fig, 2.

FiG. 5. —Calculated evolution for a series of continuous magnetic braking models (CMB (-4). The magnetic braking law is given by
equation (36), with the assumed braking index, y. indicated on each curve. The input physics and initial parameter values of all five models
{except for the value of y) are as described in the caption to Fig, 2. (@) Evolution of the orbital peried, P,,,. Arrows on the ordinate of P,
denote the mimimum orbital period attained by the binary for each of the five braking laws. () Evolution of the mass transfer rate, ..




Rappaport, Verbunt and Joss, 1983(Ap.J.275,713) conclude:

Our results are unam-
biguous i1n at least one regard: mass transfer rates in
excess of 107% M, yr ' can be driven by magnetic
braking for intervals of time = 6 X 10® yr when the mass

of the secondary is ~1 M. The mass transfer rates
subsequently decline; however, the rate of decline de-
pends sensitively on the uncertain parameters in the
magnetic braking law (see § I1h).

Implication: if this matter can be retained (weak flashes) the WD
In a CV-binary can in this early mass transfer phase grow by
some 0.1 Msun



Mass transfer driven by internal evolution
of a companion (subgiant or giant)

Webbink, Rappaport and Savonije, 1983, Ap.J. 270,678;
Taam, 1983, Ap.J.270,694.



FEvolution via Donor Expansion Low-mass red giant with degenerate He core of mass Mc

Results of detailed calculations can be represented with simple polynomial
relations in y = In M_/(0.25M ) (Webbink et al 1983):

In(Rz/Ro) = ao+ary+azy*+asy° (30)  Luminosity and radius of star
In(Ly/Lo) = bo+bi1y+byy*+b3y°. (31) depend only on Mc

The values of the fitting constants a;, b; depend on the metallicity of the
star, and are given for two metallicities, for stars in the Galactic disk, and
for stars in low-metallicity globular clusters, in Table 3.

The luminosity on the giant branch is almost completely due to hydrogen
shell burning, and is related to the core mass by

M, >~ 1.37 x 10‘”(%)114@ yr 1 (32)

Combining Equations 30 and 32 gives the relation between the change in
radius and the change in core mass:

R, WM,

R, = @+2ay+3a,p) 37 (53)

In the absence of loss of angular momentum, Equation 26 may be
rewritten

R, _ 4&@_%) (34)

R, M,\6 M,

which completes the set of equations required to calculate the binary
evolution. The orbital period and the two masses determine the radius of
the giant via Equation 25 and hence its core mass via Equation 30; the
core mass determines the rate of radius expansion via Equation 33, and
with this the mass-transfer rate via Equation 34. Thus the evolution can
be calculated without resort to complete stellar evolution codes.



INITIAL CORE MASS = 026Mg Z2=0.02

For some 50
million years,
Mdot > 10_8|\/|sun Iyr

100 One can easily
(514]
60 accrete > 0.5Msun

(if flashes weak)
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FiG. 3. —Evolution of a binary system with a secondary component of initial mass 1.0 M, initial core mass (.26 M, and composition
¥Y'=10.28, Z=0.02. From the top, successive panels indicate, as functions of time, (1) total mass ( sofid line) and core mass ( dashed line) of
the secondary; (2) radius of the secondary and orbital period of the binary; (3) intrinsic luminosity (solid line) and logarithm of the ratio of
intrinsic plus intercepted to intrinsic luminosity (dashed line) of the secondary; and (4) mass accretion rate onto the compact star.
Conservation of total mass and orbital angular momentum is assumed. An accreting neutron star of radius 10® cm and initial mass 1.4 M, is
also assumed.




For W|de |n|t|al orbits (P ~50 d to 150 d) mass transfer rates in the range
10 "to 10 Msun /yr can be achieved, and > 0.50 Msun can be transferred
to the WD

Verbunt 1993, Ann.Rev.

S
[+ initial

M2=1.DM@

0.2 0.4 0.6 0.2 0.4 0.6
M (Mg) M.(Mg)

Figure 8 Orbital period and mass-transfer rate as a function of the mass of the donor core
M., for binary evolution driven by expansion of a giant donor star. The mass-transfer rates
shown all assume M, = 1.4M_and M, = —M,.




we find
that, to an excellent approximation (+20%), the mean
mass transfer rate for our models is linearly propor-
tional to the initial orbital period:

(M) =-53x10"""M, yr ' (P,/day). (19)

Similarly, owing to the nearly constant amount of mass
transferred during tidal interaction (AM = 0.6 M), the
source lifetimes are well approximated (4 12%) by

ro=1,—1,=1.13x10° yr (P, /day) .  (20)

Webbink,Rappaport and Savonije, 1983 Ap.J.



A final type of binaries with stable thermal
timescale mass transfer with large mass and

ang. mom. loss from the system: the “intermediate-
mass X-ray binary” model:

initial donor mass 1.5 — 5 Msun and not too wide
orbits (~ 1 day to ~ 10 days).

(Tauris et al, 2000, Ap.J.)



Mass Exchange in a Binary: Nonconservative Case With both loss of mass AND

orbital angular momentum
(Verbunt 1993, Annual Rev.)

M, = "ﬁyz or M,+M, =(1_.8)M1:

i.e. a fraction B of the mass lost by the donor star is accreted onto its
companion—the rest leaves the system. The mass lost from the system
will carry angular momentum. If we write the specific angular momentum
of the mass that is lost as a times the specific angular momentum of the
mass-losing star, we may replace Equation 8 with

T M, M,
7 = =B vy

(13)

where J,, indicates the loss of angular momentum due to loss of matter.

é= 2!_2_@5[1 — pM, _ (1-pM,

M,
325 —a(lrﬁ)-*} (14)

M, 2(M,+M, M +M,]

To see the effect of mass loss on the orbit, consider the case where almost
all the mass lost by the donor is also lost from the system (ff =~ 0), and where
no loss of angular momentum occurs other than that concomitant with
the mass loss. In that case, the orbit will widen provided that
o < 14+M,/(2M,). This is the case if the mass lost leaves with specific
angular momentum equal to that of the mass-losing star, i.e. if &= 1.
Equation 14 then simplifies into

a(M,+ M) = constant. (15)

The “mass-loss” part
of the orbital angular
momentum loss

Jdot is the orbital angular
momentum loss due to
other causes: Gravitational
Radiation,“Magnetic Braking’



Taurus, vdH and Savonije, 2000,Ap.J.530

At onset of mass transfer (Porb =4d),
the 4Msun star has a radiative envelope,
resulting in stable transfer on a thermal
timescale. _
The transferred mass in excess of MEedd
is ejected from the compact star with its
specific orbital angular momentum.

For 2 million yrs, transfer rate > 10_7|\/|sun/yr
1.2Msun

Neutron star

(E11897 Wiladsworth Publishing Company./ITR

log M| (Mg yr™")

o
I

1.76x10° ' u?'mo" 1:?3'::105' d
My (Mg) Age (yr) log T (K)

Fic. I —Evolution of an X-ray binary with M, = 4.0 M, and P, = 4.0 days. Lefi: Evolution of P, as a function of M, (tune 1s mereasing to the right). Middle:
Mass-loss rate of the donor as a finction of its age since the ZAMS. Rzgﬁﬂ‘ Evolution of the mass-losing donor (selid line) m an H-R dlagram The dotted line
represents the evolutionary track of a single 4.0 M star The letters m the different panels correspond to one another at a given ev olutmnan epoch—see text
for further explanation. N
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Fic. 4 —Allowed parameter space (whife area) for producing BMSPs with-
out evolving through a CE phase. If M, > 1.5 M_ and the donor has a deep
convective envelope at the onset of mass transfer (1e., P 1s large), the system
will evelve into a CE and spiral-in phase. This 15 also the case if the mitial
period 15 very short and M, > 1.8 M In the latter case the neufron star may
collapse into a black hele.




Conclusions:

-With companions of ~ 1Msun in narrow as well as wide orbits
mass transfer rates of order > 10 Msun/yr can be driven for

long times (~10 to 50 million yrs), such that — if this mass can be
retained — the WD can grow substantially in mass (0.1 — 0.6Msun).

-With thermal timescale mass transfer from > 1.5 Msun up to ~ 5Msun
companions,mass accretion rates > 10 Msun/yr can be sustained
for several million yrs, allowing the WDs to grow with > 0.1 to 0.2
solar masses.

-Precise Population synthesis calculations of all these different
scenarios will be required in order to see whether, all combined,
can meet the observed SN la rate.



