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Global parameters

What do we know from observations about 

• energy source, 56Ni mass ? 
• total mass ?
• explosion energy ?
• density ?
• element distribution ?

Stritzinger & Leibundgut, 2005, A&A, 431, 423
Stritzinger, Leibundgut, Walch & Contardo, 2006, A&A, 450, 241
Blinnikov, et al., 2006, A&A, 453, 229
Stritzinger, Mazzali, Sollerman & Benetti, 2006, A&A, 460, 793



Usual procedure

Take explosion model
    density and element distribution and
    explosion energy
and calculate the emerging spectrum and SED

♣ always assume that you know the progenitor 
      usually Chandrasekhar mass white dwarf
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Can we do better?

Determine 56Ni from the peak luminosity
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Bolometric light curves



56Ni masses from light curves



Check with a different method
Ni masses from the emission line in 
nebular spectra (t~300 days) 
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Calculate the emission from explosion
    models (Röpke et al. 2004-2006) 

with a radiation transport code 
(STELLA – Blinnikov et al. 1998) and 
then derive the parameters from 
these “observations.”

Check with models
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Comparison with real data

Blinnikov et al. 2006



Check …

UVOIR light curve 
reproduced very well – 
validation of procedure in 
SL05 

True bolometric light curve 
offset by about 15%

10% correction used is 
SL05 not quite right …

Blinnikov et al. 2006



Lower limits on H0 from models of SNe Ia



Determining H0 from models

• Hubble’s law

• Luminosity distance

• Ni-Co decay

€ 

D =
v
H0

=
cz
H0



H0 from the nickel mass

α: conversion of nickel energy into radiation 
(L=αENi)

ε(t): energy deposited in the supernova ejecta 
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H0 from the nickel mass

α: conversion of nickel energy into radiation 
(L=αENi)

ε(t): energy deposited in the supernova ejecta 

Need bolometric flux at maximum F
 and the redshi< z as observables

Stritzinger & Leibundgut (2005)



Assumptions

Rise time (15-25 days) 
      about 10% uncertainty
Arnett’s rule

energy input at maximum equals radiated energy 
(i.e. α≈1, ε(tmax) ≈1)

Nickel mass from models
  uniquely defines the bolometric peak 

luminosity



H0 and the Ni mass

Problem: 
Since SNe Ia 
have individual 
Ni masses it is 
not clear which 
one to apply!
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Ejecta masses from light curves

• γ-ray escape depends on the total mass 
of the ejecta

• v: expansion
velocity

• κ: γ-ray 
opacity

• q: distribution
of nickel
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Ejecta masses

Large range in nickel and ejecta masses
• no ejecta mass at 1.4Msun

• factor of 2 in ejecta masses
• some rather small

differences between
nickel and ejecta
mass

Stritzinger et al. 2006a



Dependence on explosion       
parameters

case 1: (fiducial)
v=3000 km/s), 
κ=0.025 cm2/g and q=1/3

case 2: 
v=3625 km/s

case 3: 
v=3625 km/s, 
κ=0.0084 cm/g and 

      q=1/2

case 4: 
v=3625 km/s, 
κ=0.0084 cm/g and 

      q=1/3



Summary

      Arnett’s rule is astonishingly good
 determine the nickel mass in the explosion 

from the peak luminosity
 large variations (up to a factor of 10)
 lower limit on H0 based on models: 50

Ejecta masses appear to scatter considerably
 implications for progenitors?
 model too simple ?
  how can we improve?



Summary (cont.)

SNe Ia may be more varied than we like…
Differences in the explosions? 

– density
– ignition 
– asymmetries
– progenitor mass
– metallicity



Very Late-time Emission
◊ Nucleosynthesis of radioactive and stable elements 
      and their distribution

◊ Unique opportunity to probe the magnetic field structure/
configuration

• A weak/radially combed magnetic field 
      ---> no deposition of positrons
• A strong/tangled magnetic field 
      --> depostion of positrons
  
◊ Constrain  positron’s contribution to the Galactic 
      511 KeV line

◊ Study physics of freeze-out and the IR-catastrophe
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Sollerman et al. 2004
Lair et al. 2006 



Late-time emission in IR
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Late-time emission in IR

Sollerman et al. 2004

SN 2000cxSN 2001el

Stritzinger & Sollerman 2007



Late-time energetics



Late-time energetics



Summary

• increase importance of the IR during late-times 
is a generic feature of normal Ia’s

•  pervious conclusions of positron escape based       
on optical photometry alone are incorrect


