Harvard-Smithsonian Center for Astrophysics

&

University of Warwick

G.Nelemans, T.Marsh, P.Groot, G.Roelofs et al.

The population of double white dwarfs

 Spectroscopic radial velocity surveys of WDs have revealed a large population of double degenerate binaries

SPY project Napiwotski et al. 2006

- ~15% of surveyed WDs are in a short period double; few 10⁸ such systems in the Galaxy!
- Binary evolution towards shorter orbital periods driven by angular momentum loss via gravitational wave emission
- A significant fraction (P_i < 10h) will enter a mass transfer phase within a Hubble time (Type Ia progenitors?)

Mass transfer and stability: merger vs accretion

 Initial stability of mass transfer determined by the response of the mass donor to mass loss:

$$\zeta_2 = \partial \log R_2 / \partial \log M_2 < 0$$

 if donor radius relative to Roche-lobe radius grows, mass transfer runs away leading to rapid merger

Courtesy NASA/GSFC

Mass transfer between two white dwarfs at contact

• Post common-envelope detached double white dwarfs driven into contact by gravitational waves (P<10hrs)

Angular momentum transport

 Loss of orbital angular momentum via gravitational wave radiation:

$$dJ_{GR}/dt = -32/5 G^3/c^5 M_1 M_2 M/a^4 J_{orb}$$

Transfer of momentum via mass loss:

$$dJ_2/dt = (GM_1R_h)^{1/2} dM_2/dt$$

- An extended accretion disc effectively couples transferred angular momentum (J₂) back to the orbit via tides
- What if there is no disk but angular momentum is dumped onto the primary?
- Spin orbit coupling: non-synchronous rotation leads to angular momentum transport via tidal/magnetic or viscous torques

$$dJ_{SO}/dt = kM_1R_1^2 (\Omega_s - \Omega_o) / \tau_s$$

Mass transfer between two white dwarfs

• Semi-detached 'direct-impact' birth at P~few mins

Nelemans et al. 2001, Marsh & Steeghs 2002, Marsh, Nelemans & Steeghs 2004

Webbink & Iben 1987

Surviving the direct-impact phase

• Survival of the initial direct impact phase uncertain

• Crucial for using AM CVns to probe DWD progenitor population

Recent theoretical developments

 Gokhale, Peng & Frank 2007
v. similar conclusions including donor star tidal and advective term and donor star asynchronism

numerical integrations suggest some super-Eddington systems with initial $q > q_{crit}$ may actually survive as turns around

Danny Steeghs

Recent theoretical developments

 Donor stars are (likely) not fully degenerate and their radii do not correspond to cold degenerate objects

Deloye et al. 2005, Deloye & Taam 2006

Imprint of prior evolution, affects orbital period evolution

and mass transfer stability

Observations suggest semidegenerate donors

Roelofs et al. 2007

Recent theoretical developments

Hydro simulations of initial mass transfer

D'Souza et al. 2006

First steps At 10⁴ M_{Edd}!

Any systems undergoing direct-impact?

- Direct impact accretion first proposed to explain the 9 min variable V407 Vul (Marsh & Steeghs 2002)
 - Short period
 - Luminous x-ray source with emission pulsed at full amplitude
 - No polarisation; non-magnetic
 - Out of phase optical pulsations
 - No emission lines (?)

The not-so-cooperative; V407 Vul

7 hours (53 orbits) of Gemini GMOS spectroscopy of V407 Vul

Period distribution of current AM CVn systems

The blue variable ES Ceti with Magellan

ES Cet: a 10.3 minute binary

Steeghs, Marsh, Nelemans, Ramsay 2004; Steeghs et al. in prep

The accretion geometry

Dynamics: Modulation Doppler imaging

X-ray/UV observations with XMM

Danny Steeghs

A multi-wavelength picture

Are the primaries spun-up?

GP Com & V396 Hya

Steeghs et al. 2007

Central spike from the accreting WD

Summary

- Ultra-compact accreting white dwarfs are an abundant population and provide a crucial anchor for modeling common-envelope evolution and Type Ia DD progenitor route
- Growing sample of stable AM CVn systems, although selection effects are still severe
- Initial phase of mass transfer after contact is dominated by direct-impact geometry
- The survival rate and mass transfer rate evolution depends on the angular momentum exchange (still large uncertainties)
- Fast time-series observations permit accurate orbital periods, accretion geometry and mass (and spin) constraints

