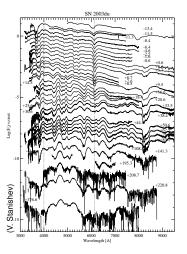
Radiative transfer in SNIa ejecta How do we know what we see?

Daniel Sauer

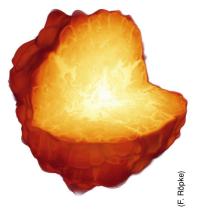

Max Planck Institute for Astrophysics Garching, Germany

collaborators Paolo Mazzali, Stuart Sim, Adi Pauldrach, Fritz Röpke, Wolfgang Hillebrandt

February 2007

Motivation

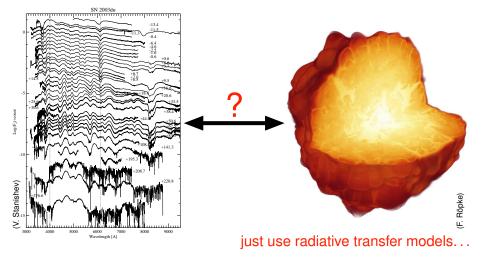
What do we see here?



Motivation

What do we see here?

What would we see here?



Motivation

What do we see here?

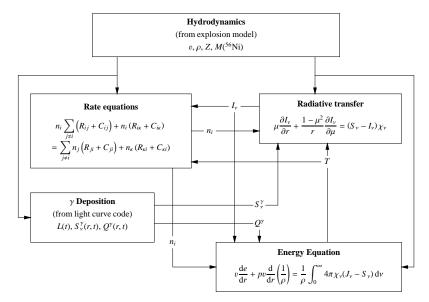
What would we see here?

Radiative transfer equation

$$\frac{1}{h\nu} \left[\frac{1}{c} \frac{\partial}{\partial t} + \mathbf{n} \cdot \nabla \right] I_{\nu} = \frac{1}{h\nu} \left[\eta(\mathbf{r}, \mathbf{n}, \nu, t) - \chi(\mathbf{r}, \mathbf{n}, \nu, t) I_{\nu} \right]$$

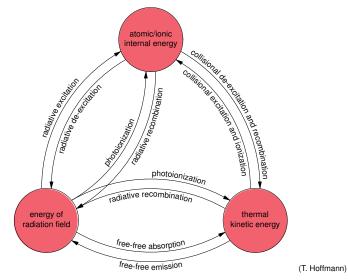
Radiative transfer equation

$$\frac{1}{h\nu} \left[\frac{1}{c} \frac{\partial}{\partial t} + \mathbf{n} \cdot \nabla \right] I_{\nu} = \frac{1}{h\nu} \left[\eta(\mathbf{r}, \mathbf{n}, \nu, t) - \chi(\mathbf{r}, \mathbf{n}, \nu, t) I_{\nu} \right]$$
Radiation


Radiative transfer equation

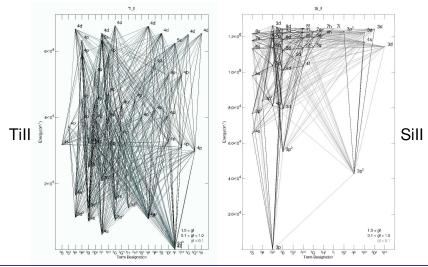
$$\frac{1}{h\nu} \left[\frac{1}{c} \frac{\partial}{\partial t} + \mathbf{n} \cdot \nabla \right] I_{\nu} = \frac{1}{h\nu} \left[\eta(\mathbf{r}, \mathbf{n}, \nu, t) - \chi(\mathbf{r}, \mathbf{n}, \nu, t) I_{\nu} \right]$$
Radiation
Can be solved if source function $S_{\nu} = \eta_{\nu} / \chi_{\nu}$ is known:
Formal solution (here the plane parallel case)

$$I_{\nu}^{+}(\tau = 0, \mu) = I_{\nu}^{+}(\tau_{\nu}^{\max}, \mu) e^{-\frac{1}{\mu}(\tau_{\nu}^{\max} - \tau_{\nu})} + \int_{\tau_{\nu}^{\max}}^{\tau_{\nu}} S_{\nu} e^{-\frac{1}{\mu}(\tau_{\nu}' - \tau_{\nu})} \frac{\mathrm{d}\tau_{\nu}'}{-\mu}$$


But in general η_{ν} and χ_{ν} are functions of $I_{\nu}!$ \Rightarrow Iteration necessary

Radiative transfer models of SNIa

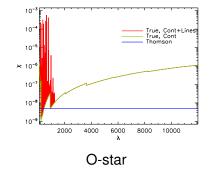
Ingredients of a non-LTE model for SN la

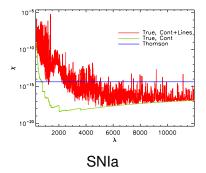

Energy pools and transfer

... why SNIa are not normal stellar atmospheres.

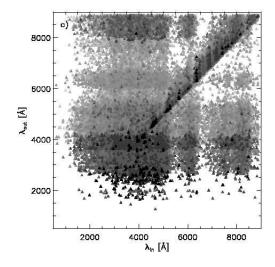
- fast expanding ejecta with 3D structure
 - \rightarrow time-dependent, 3D problem (special relativity)
- dominated by Fe-group and IME elements
- lots of atomic physics required (lines, cross-sections...)
- not much true continuum
 - \rightarrow lots of scattering (lines and electrons)
 - \rightarrow temperature mostly decoupled from radiation field.
 - \rightarrow non-thermal "Pseudo-continuum"
 - \rightarrow no useful mean optical depth scale
- energy generation within the ejecta, non-thermal excitation
- high velocities, low densities \rightarrow non-LTE problem
- ⇒ no simple relationship between macroscopic quantities and micro-physical occupation numbers

... why SNIa are not normal stellar atmospheres.




Daniel Sauer

... why SNIa are not normal stellar atmospheres.


- fast expanding ejecta with 3D structure
 - \rightarrow time-dependent, 3D problem (special relativity)
- dominated by Fe-group and IME elements
- lots of atomic physics required (lines, cross-sections...)
- not much true continuum
 - \rightarrow lots of scattering (lines and electrons)
 - \rightarrow temperature mostly decoupled from radiation field.
 - \rightarrow non-thermal "Pseudo-continuum"
 - \rightarrow no useful mean optical depth scale
- energy generation within the ejecta, non-thermal excitation
- high velocities, low densities \rightarrow non-LTE problem
- ⇒ no simple relationship between macroscopic quantities and micro-physical occupation numbers

Opacity distribution at the "photosphere"

Line scattering and fluorescence

Advantages

... yes there are some!

- large grad $v \rightarrow$ can use the Sobolev approximation
- homologous expansion $v = r/t \Rightarrow \operatorname{grad} v = \operatorname{const}$
- no H, He Fe-group ions have many low-lying levels
 → within an ionization stage LTE is not too bad
- gas temperature only mildly affects radiation field

Advantages

... yes there are some!

- large grad $v \rightarrow$ can use the Sobolev approximation
- homologous expansion $v = r/t \Rightarrow \operatorname{grad} v = \operatorname{const}$
- no H, He Fe-group ions have many low-lying levels
 → within an ionization stage LTE is not too bad
- gas temperature only mildly affects radiation field

Depending on the constraints (time, funding...): use suitable approximations to the full problem.

(Semi-)analytic approaches

- D. Arnett (1982) analytic derivation of light curve behaviors
- ⇒ "Arnett's Rule": the luminosity at peak is roughly equal to the deposition of γ -photons

$$L_{p} = \alpha R(t_{p})M(^{56}Ni)$$

 \Rightarrow Estimate for the ⁵⁶Ni mass.

 Pinto & Eastman (2000): semi-analytic description of LC properties and opacity treatment for radiative transfer in SNIa

Parameterized approach

SYNOW (D. Branch)

- \rightarrow highly parameterized
- $\rightarrow\,$ line identification in observed spectra
- \rightarrow Caution: unphysical results possible!

Solving the transfer equation

... toward the full non-LTE problem

Spectra:

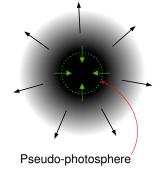
- PHOENIX (Baron/Lentz/Hauschildt)
- WMbasic (Pauldrach)
- CMFGEN (Dessart/Hillier)
- HYDRA (Höflich)
- \rightarrow non-LTE usually stationary and spherically symmetric
- $\rightarrow\,$ limited use for analyzing observed spectra
- $\rightarrow\,$ "forward modeling" of explosion models (However: Explosion models are 3D now. . .)

LC:

Blinnikov/Sorokina, Iwamoto et al, Höflich: radiation-hydro with approximated non-LTE low wavelength resolution Concept: instead of solving the transfer equation explicitly, follow the random walk of photon packets through the ejecta.

- any geometry possible
- parallelizes easily
- naturally conserves the radiative energy
- resource intensive to get good MC statistics (memory/time)

with Sobolev escape probabilities and MC estimators \rightarrow derive ${\it S}$ which can be used in the formal integral (Lucy)

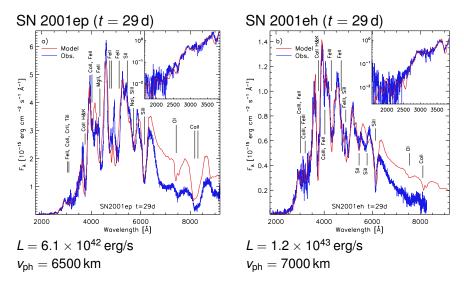

 $\rightarrow\,$ reduce MC noise even with low statistics!

Monte Carlo methods

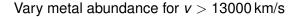
- P. Mazzali/L. Lucy
 - spectra code (approx. non-LTE, sph. sym., no time dep.)
 - LC with gray opacity
 - nebular spectral code (non-LTE with γ -dep. + positrons)
 - generalisation to 3D: M. Tanaka (early time spectra), K. Maeda (LC, nebular spectra)
- S. Sim: LC (3D, currently gray)
- D. Kasen/R. Thomas: 3D-spectra with time dep. effects (LTE)

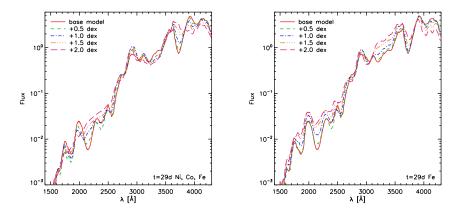
Applications (I) UV spectra of SNIa

- Monte Carlo spectral synthesis code (Mazzali/Lucy)
- stationary, spherically symmetric, W7 density
- stratified composition
- L emitted at the "photosphere"
- Input: Z(v), ρ(v), L, t, v_{ph}

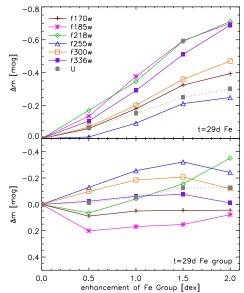


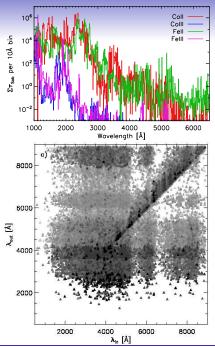
The UV part of SNIa spectra


Why is the UV interesting?


- that's what you see at high-z
- so far not many observations → properties of SNIa in the UV are not as well known as in other bands (variations, correlations?) (see also Lentz et al 2001)
- probes the high velocities → progenitor-properties?
- are SNIa standard candles in the UV?

The UV part of SNIa spectra


Metallicity dependence of the UV


Effect on the photometry

- model flux integrated in WFPC2 filters
- change in *m* relativ to base model
- \Rightarrow *L* can go both ways!

Interpretation

- reverse fluorescence
 red → blue is an important process in the outer part
- emitted spectrum depends on line distribution in wavelength space (see Pinto&Eastman 2000)

Conclusions from the UV models

- UV flux can react sensitively to changes in the physical conditions in the outermost layers of the ejecta
- increased metallicity can lead to an increased UV-flux

Application (II)

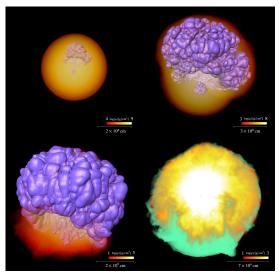
3D light curves from off-center ignition SNIa

Observational evidence?

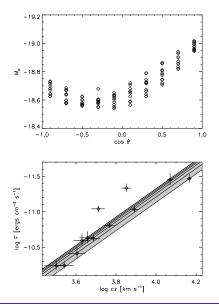
- sources for intrinsic scatter in properties of "normal" SNIa
- outliers and odd-balls
- source of polarization?

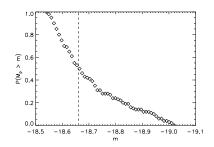
Theoretical aspects

- uncertainty in the ignition process could lead to asymmetries
- DDT?
- other detonation scenarios (Plewa et al 2004, Röpke et al 2007)


 $(\rightarrow$ Stuart Sim at the conference)

SNIa light curves from different viewing angles


- Monte Carlo LC code (\rightarrow Sim 2007)
- use Monte Carlo estimators to extract information needed for the formal solution as last step in the simulation (Lucy 2005)
- 3D time-dependent transport and energy deposition for γ-photons.
- gray bolometric treatment for optical photons. (composition dependence: $\kappa \propto 0.9 X_{\text{FeGr}} + 0.1$)


Off-center ignition SNIa

(Röpke et al. 2007)

Viewing angle effect

Hubble diagram (Stritzinger&Leibundgut 2005) → model cannot be ruled out by the dispersion of observed objects! if a significant fraction of SNIa explode like this...

- viewing angle effects could contribute to the intrisic scatter in the Hubble diagram
- effect unlikely to follow the known LC-width relation
- asymmetry of the probability distribution
 - \rightarrow potential observational bias
- ... topic needs further investigation