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Motivation
What do we see here?
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just use radiative transfer models. . .
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Radiative transfer equation

1
hν

[
1
c

∂

∂t
+ n · ∇

]
Iν =

1
hν

[η(r, n, ν, t)− χ(r, n, ν, t)Iν ]

Matter

Radiation
Can be solved if source function Sν = ην/χν is known:

Formal solution (here the plane parallel case)

I+ν (τ = 0, µ) = I+ν (τmax
ν , µ)e−

1
µ

(τmax
ν −τν) +

∫ τν

τmax
ν

Sνe−
1
µ

(τ ′
ν−τν) dτ ′ν

−µ

But in general ην and χν are functions of Iν !
⇒ Iteration necessary
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Radiative transfer models of SNIa

Hydrodynamics

(from explosion model)

v, ρ, Z, M(56Ni)

Rate equations

ni

∑

j,i

(

Ri j + Ci j

)

+ ni (Riκ +Ciκ)

=

∑

j,i

n j

(

R ji +C ji

)

+ nκ (Rκi +Cκi)

Radiative transfer

µ
∂Iν
∂r
+

1 − µ2

r
∂Iν
∂µ
= (S ν − Iν)χν

Energy Equation

v
de
dr
+ pv

d
dr

(

1
ρ

)

=

1
ρ

∫

∞

0
4π χν(Jν − S ν) dν

γ Deposition

(from light curve code)

L(t), S γν (r, t), Qγ(r, t)

Iν

ni

ni

T

Qγ

S γν
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Ingredients of a non-LTE model for SN Ia
Energy pools and transfer

internal energy
atomic/ionic

radiation field
energy of

kinetic energy
thermal
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photoionization

radiative recombination

collisional de-excitation and recom
bination

collisional excitation and ionization

(T. Hoffmann)
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Radiative transfer models of SNIa (early phases)
. . . why SNIa are not normal stellar atmospheres.

• fast expanding ejecta with 3D structure
→ time-dependent, 3D problem (special relativity)

• dominated by Fe-group and IME elements
• lots of atomic physics required (lines, cross-sections. . . )
• not much true continuum
→ lots of scattering (lines and electrons)
→ temperature mostly decoupled from radiation field.
→ non-thermal “Pseudo-continuum”
→ no useful mean optical depth scale

• energy generation within the ejecta,
non-thermal excitation

• high velocities, low densities → non-LTE problem
⇒ no simple relationship between macroscopic quantities and

micro-physical occupation numbers

TiII SiII
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Radiative transfer models of SNIa (early phases)
Opacity distribution at the “photosphere”

O-star SNIa
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Radiative transfer models of SNIa (early phases)
Line scattering and fluorescence
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Advantages
. . . yes there are some!

• large grad v → can use the Sobolev approximation
• homologous expansion v = r/t ⇒ gradv = const
• no H, He - Fe-group ions have many low-lying levels
→ within an ionization stage LTE is not too bad

• gas temperature only mildly affects radiation field

Depending on the constraints (time, funding. . . ):
use suitable approximations to the full problem.
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(Semi-)analytic approaches

• D. Arnett (1982) analytic derivation of light curve behaviors
⇒ “Arnett’s Rule”: the luminosity at peak is roughly equal to

the deposition of γ-photons

Lp = αR(tp)M(56Ni)

⇒ Estimate for the 56Ni mass.
• Pinto & Eastman (2000): semi-analytic description of LC

properties and opacity treatment for radiative transfer in
SNIa
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Parameterized approach

SYNOW (D. Branch)
→ highly parameterized
→ line identification in observed spectra
→ Caution: unphysical results possible!
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Solving the transfer equation
. . . toward the full non-LTE problem

Spectra:
• PHOENIX (Baron/Lentz/Hauschildt)
• WMbasic (Pauldrach)
• CMFGEN (Dessart/Hillier)
• HYDRA (Höflich)
→ non-LTE usually stationary and spherically symmetric
→ limited use for analyzing observed spectra
→ “forward modeling” of explosion models

(However: Explosion models are 3D now. . . )

LC:
Blinnikov/Sorokina, Iwamoto et al, Höflich:
radiation-hydro with approximated non-LTE
low wavelength resolution
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Monte Carlo methods

Concept: instead of solving the transfer equation explicitly,
follow the random walk of photon packets through the ejecta.

• any geometry possible
• parallelizes easily
• naturally conserves the radiative energy
• resource intensive to get good MC statistics (memory/time)

with Sobolev escape probabilities and MC estimators
→ derive S which can be used in the formal integral (Lucy)

→ reduce MC noise even with low statistics!
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Monte Carlo methods

• P. Mazzali/L. Lucy
- spectra code (approx. non-LTE, sph. sym., no time dep.)
- LC with gray opacity
- nebular spectral code (non-LTE with γ-dep. + positrons)
- generalisation to 3D: M. Tanaka (early time spectra),

K. Maeda (LC, nebular spectra)

• S. Sim: LC (3D, currently gray)
• D. Kasen/R. Thomas: 3D-spectra with time dep. effects

(LTE)
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Applications (I)
UV spectra of SNIa

• Monte Carlo spectral synthesis
code (Mazzali/Lucy)

• stationary, spherically symmetric,
W7 density

• stratified composition
• L emitted at the “photosphere”
• Input: Z (v), ρ(v), L, t , vph

Pseudo-photosphere
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The UV part of SNIa spectra

Why is the UV interesting?
• that’s what you see at high-z
• so far not many observations → properties of SNIa in the

UV are not as well known as in other bands (variations,
correlations?) (see also Lentz et al 2001)

• probes the high velocities → progenitor-properties?
• are SNIa standard candles in the UV?
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The UV part of SNIa spectra

SN 2001ep (t = 29 d)

L = 6.1× 1042 erg/s
vph = 6500 km

SN 2001eh (t = 29 d)

L = 1.2× 1043 erg/s
vph = 7000 km
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Metallicity dependence of the UV

Vary metal abundance for v > 13000 km/s
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Effect on the photometry

• model flux integrated
in WFPC2 filters

• change in m relativ
to base model

⇒ L can go both ways!
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Interpretation

• reverse fluorescence
red → blue is an important
process in the outer part

• emitted spectrum depends
on line distribution in
wavelength space (see
Pinto&Eastman 2000)

Daniel Sauer KITP – 14 Feb 2007 20



Conclusions from the UV models

• UV flux can react sensitively to changes in the physical
conditions in the outermost layers of the ejecta

• increased metallicity can lead to an increased UV-flux
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Application (II)
3D light curves from off-center ignition SNIa

Observational evidence?

• sources for intrinsic scatter
in properties of “normal”
SNIa

• outliers and odd-balls

• source of polarization?

Theoretical aspects

• uncertainty in the ignition
process could lead to
asymmetries

• DDT?

• other detonation scenarios
(Plewa et al 2004, Röpke
et al 2007)

(→ Stuart Sim at the conference)
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SNIa light curves from different viewing angles

• Monte Carlo LC code (→ Sim 2007)
• use Monte Carlo estimators to extract information needed

for the formal solution as last step in the simulation (Lucy
2005)

• 3D time-dependent transport and energy deposition for
γ-photons.

• gray bolometric treatment for optical photons.
(composition dependence: κ ∝ 0.9XFeGr + 0.1)
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Off-center ignition SNIa
(Röpke et al. 2007)

2 × 108 cm 3 × 108 cm

2 × 109 cm 7 × 109 cm

log(ρ) [g/cm3]

log(ρ) [g/cm3] log(ρ) [g/cm3]

log(ρ) [g/cm3]4 9 3 8

1 5 1 3
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Viewing angle effect

Hubble diagram
(Stritzinger&Leibundgut 2005)

→ model cannot be ruled out
by the dispersion of observed
objects!
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Main conclusion

if a significant fraction of SNIa explode like this. . .

• viewing angle effects could contribute to the intrisic scatter
in the Hubble diagram

• effect unlikely to follow the known LC-width relation
• asymmetry of the probability distribution
→ potential observational bias

• . . . topic needs further investigation
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