Type la Supernovae in Globular Clusters

Eric Pfahl (KITP)
with

Lars Bildsten, Evan Scannapieco(KITP) Mike Muno (Caltech)

Accretion and Explosion, KITP May 24, 2007

What We Don't Know Might Hurt Us

- Yes, las are explodingWDs.
- Yes, they're in binaries.
- But what channels lead to las?
- Do la characteristics depend on Z? On age?
- There is diversity. What causes this?
- Does any of this affect the cosmological results?

We need better constraints on la environments.

What is a Globular?

- Bound collection of $>10^{5}$ stars.
- Relics of galaxy formation.
- Typically old (I0 Gyr).
- Typically subsolar Z.
- Internal ages and Zs constant.
- $10^{4}-10^{6}$ stars pc^{-3} in center.

L, Age, and Z measurable!

Globulars in Spirals

(Spitler et al. 2006)

MIO4 (Sombrero)

Globulars in Ellipticals

(Tamura et al. 2006)

$$
R^{1 / 4}\left[\operatorname{arcmin}^{1 / 4}\right]
$$

Metallicities

Luminosity Function

Numbers

Specific Frequency: $\mathrm{S}_{\mathrm{N}}=\mathrm{N}_{\mathrm{GC}} 10^{0.4\left(\mathcal{M}_{\mathrm{V}}+15\right)}$

> | $\frac{\text { Spirals }}{S_{N} \sim 1-2}$ |
| :---: |
| $\begin{array}{c}\sim 200 \mathrm{GCs} \\ \text { in the } \mathrm{MW}\end{array}$ |

Mass Fraction

GC Mass Fraction: $F_{G C}=M_{G C} / M_{g a l}$

$$
\mathrm{F}_{\mathrm{GC}} \sim 10^{-3} \mathrm{~S}_{\mathrm{N}} \frac{\mathrm{~m}_{5}}{\Upsilon_{\mathrm{V}, \mathrm{gal}}} \quad \begin{aligned}
& \binom{\left.\Upsilon_{\mathrm{V}}=\frac{\text { Stellar Mass }\left[\mathrm{M}_{\odot}\right]}{\text { Stellar Light }\left[\mathrm{L}_{\odot, \mathrm{V}}\right]}\right)}{\left(\mathrm{m}_{5}=\frac{\mathrm{M}_{\mathrm{GC}}}{\mathrm{~N}_{\mathrm{GC}} 10^{5} \mathrm{M}_{\odot}}\right)}
\end{aligned}
$$

A small fraction of las...

Rate

$$
\begin{aligned}
& \text { Low-z la rate: } \sim 10^{-4.5} \mathrm{yr}^{-1} \mathrm{Mpc}^{-3} \\
& \sim 100\left(\frac{\mathrm{D}}{(100 \mathrm{Mpc}}\right)^{3} \mathrm{yr}^{-1} \\
& \begin{array}{c}
\text { Reach of } \\
\text { GC studies }
\end{array}
\end{aligned}
$$

$\sim 3-10 \%$ associated with mass component?
(Scannapieco \& Bildsten 2005)

GCla rate \lesssim few $\times 10^{-2} \mathrm{yr}^{-1}$ within 100 Mpc ?

Dynamical enhancement?

- Dynamical interactions may enhance the rate.
- NS binaries, blue stragglers, etc., are overabundant/mass in GCs by factor of 100 .
- Why not las? (Shara \& Hurley 2002; Ivanova et al. 2006)
- Enhancement of xIO may not be asking much.

A few GClas per decade within 100 Mpc ?

How do we find them?

- First, check the archive (some interesting cases).
- Use archival images (if they exist).
- Late-time followup (>| yr).
- Especially target las with large offsets.

We should (and probably can) do this for every la within 100 Mpc.

Late-Time Light Curve

What do we learn?

- Are GClas different? Peak L? Lightcurve?
- Constrain la progenitors?
- Affected by low Z?
- Do las really occur in old stellar systems? (addresses 'frosting' issue)
- GCla rate interesting for la progenitor models and cluster dynamics.

