A Confounding Class of Peculiar Type Ia Supernovae?

Saurabh Jha KIPAC/SLAC

with A. Filippenko, R. Chornock, R. Foley, W. Li (UC Berkeley), D. Branch (U. Oklahoma), M. Phillips (LCO) and the SDSS SN Survey

Accretion and Explosion: The Astrophysics of Degenerate Stars KITP/UCSB May 1, 2007

How peculiar is peculiar?

Phillips et al. (2007)

SN 2002cx and SN 2005hk

These are Type Ia Supernovae

Chornock et al. (2006)

SN 2005hk light curves

Phillips et al. (2007)

SN 2002cx Late-Time Spectra

scaled f_x + constant

SN 2002cx Late-Time Spectra

SN 2002cx: full of iron

Li et al. (2007, in prep)

SN 2005hk observed even later

The SN 2002cx-like Subclass

- SN 2002cx, 2005hk, 2003gq, 2005P, 2005cc, 1991bj (Stanishev 2006)
- Like normal SN Ia, 2005hk has low polarization (Chornock et al. 2006)
- very low velocities and luminosities
- all in blue, late-type hosts

NGC 5468 (SN 2005P host)

UGC 272 (SN 2005hk host)

The SN 2002cx-like Subclass

- SN 2002cx, 2005hk, 2003gq, 2005P, 2005cc, 1991bj (Stanishev 2006)
- Like normal SN Ia, 2005hk has low polarization (Chornock et al. 2006)
- very low velocities and luminosities
- all in blue, late-type hosts
- cosmological implications?
- progenitor models:
 - mixed layers, low ⁵⁶Ni mass
 - low-velocity unburned material
 - weak 3-d deflagration?
 - high mass and density at low velocity: "failed" SN Ia? CC?
- peculiar objects may be the key to understanding normal SN la!

A Hubble Bubble?

a 6% difference in the expansion rate at a radius of 100 Mpc, roughly isotropic

statistical significance is 2.5σ , but robust with subsamples, other distance techniques

Jha, Riess, & Kirshner (2006)

A Hubble Bubble?

- a real local void?
- K-corrections?
- photometric offset?
 - new data vs. Calán/Tololo?
 - morphology/extinction?

a potentially huge systematic → test with more nearby objects!

Comparing light-curve fitters

Comparing light-curve fitters

a strong change in color excess across the low-redshift sample

the Hubble Bubble signature depends critically on the luminosity/color-excess correction

using the same correction, all the light-curve fitters (MLCS2k2, SALT, SALT2, and SIFTO) agree.

Conley et al. (2007, in prep)

What's the correct correction?

Weird dust, even in cases with low extinction? (e.g., scattering: Wang 2005) A second parameter? Luminosity correlated with an intrinsic color excess?

A combination of normal dust, weird dust, intrinsic variations!?