A Confounding Class of Peculiar Type Ia Supernovae?

with
A. Filippenko, R. Chornock, R. Foley, W. Li (UC Berkeley), D. Branch (U. Oklahoma), M. Phillips (LCO) and the SDSS SN Survey

Saurabh Jha
KIPAC/SLAC

Accretion and Explosion: The Astrophysics of Degenerate Stars
KITP/UCSB May 1, 2007
How peculiar is peculiar?

Phillips et al. (2007) - 2005hk

![Graph](image-url)

The black triangle in each panel corresponds to SN 2005hk.
SN 2002cx and SN 2005hk

Li et al. (2003); Phillips et al. (2007)
These are Type Ia Supernovae

These are Type Ia Supernovae

hot at early times

velocities are ½ normal

Chornock et al. (2006)
SN 2005hk light curves

- relatively fast decline in B,V
 $\Delta m_{15}(B) \approx 1.6$ mag (unlike 91T)
- broad, plateau-like in R
- no second peak in IR
- slow decline after the knee

SDSS late-time light curve
slow late-time decline
0.014 mag day$^{-1}$
SN 2002cx Late-Time Spectra

Jha et al. (2006)
SN 2002cx Late-Time Spectra

Jha et al. (2006)
SN 2002cx: full of iron

Li et al. (2007, in prep)
SN 2005hk observed even later

- unprecedentedly low velocities
- still dominated by permitted Fe
- no sign of [O I] 6300 Å
- good density diagnostics: [Ca II]/Ca II, [Fe II]/Fe II, $\geq 10^2$-10^3 higher than normal SN Ia

Chornock, Foley, & Filippenko (2006)

Li et al. (2007, in prep)
The SN 2002cx-like Subclass

- Like normal SN Ia, 2005hk has low polarization (Chornock et al. 2006)
- very low velocities and luminosities
- all in blue, late-type hosts

Jha et al. (2006)
The SN 2002cx-like Subclass

• Like normal SN Ia, 2005hk has low polarization (Chornock et al. 2006)

• very low velocities and luminosities

• all in blue, late-type hosts

• cosmological implications?

• progenitor models:
 • mixed layers, low 56Ni mass
 • low-velocity unburned material
 • weak 3-d deflagration?
 • high mass and density at low velocity: “failed” SN Ia? CC?

• peculiar objects may be the key to understanding normal SN Ia!

Jha et al. (2006)
A Hubble Bubble?

a 6% difference in the expansion rate at a radius of 100 Mpc, roughly isotropic

Jha, Riess, & Kirshner (2006)
A Hubble Bubble?

- a real local void?
- K-corrections?
- photometric offset?
 - new data vs. Calán/Tololo?
 - morphology/extinction?

a potentially huge systematic
→ test with more nearby objects!
Comparing light-curve fitters

MLCS2k2 and SALT2 give tightly correlated light curve parameters!

Small (few percent) differences arise in converting these parameters to distances.

Conley et al. (2007, in prep)
Comparing light-curve fitters

a strong change in color excess across the low-redshift sample

the Hubble Bubble signature depends critically on the luminosity/color-excess correction

using the same correction, all the light-curve fitters (MLCS2k2, SALT, SALT2, and SIFTO) agree.

Conley et al. (2007, in prep)
What's the correct correction?

Conley et al. (2007, in prep)

empirical fits: \(\beta \approx 2 \)

normal dust: \(\beta \approx 4 \)

So what's the answer?

Weird dust, even in cases with low extinction? (e.g., scattering: Wang 2005)

A second parameter? Luminosity correlated with an intrinsic color excess?

A combination of normal dust, weird dust, intrinsic variations!!