

Stefan Immler

(CRESST NASA/GSFC)

and the Swift Supernova Team

The Swift Observatory

Filters/Grisms

Burst Alert Telescope			
Detector	CdZnTe		
Aperture	Coded Mask		
Effective Area	5200 cm^2		
Field of View	2.0 sr (partially coded)		
Detection Elements	256×128 elements		
Point Spread Function	20 arcmin		
Location Accuracy	3 arcmin		
Energy Range	15-150 keV		
X-Ray Telescope			
Detector	XMM EPIC CCD		
Effective Area	135 cm^2 at 1.5 keV		
Field of View	$23.6 \times 23.6 \operatorname{arcmin}^2$		
Detection Elements	600 × 600 pixel		
Point Spread Function	18 arcsec HPD at 1.5 keV		
Location Accuracy	3 arcsec		
Energy Range	0.2-10 keV		
UV/Optical Telescope			
Aperture	30 cm Ritchey-Chrétien		
Detector	Intensified CCD		
Detector Operation	Photon Counting		
Field of View	$17 \times 17 \operatorname{arcmin}^2$		
Point Spread Function	1.9 arcsec at 350 nm		
Location Accuracy	0.3 arcsec		
Wavelength Range	170 nm - 650 nm		
Spectral Resolution	200 at 400 nm		

7/2

The Swift UVOT Filters

SN	Туре	SN	Туре
2005am	la	2006bc	11
2005bc	la	2006bp	IIP
2005bf	lb/c	2006bv	lln
2005cf	la	2006dd	la
2005cs	11	2006dm	la
2005da	lc	2006dn	lc
2005df	la	2006ej	la
2005ek	lc	2006jc	lb
2005gj	la	2006lc	lb/c
2005hk	la	2006gy	lln
2005ip	lln	2006lt	lb
2005ke	la	2006mr	la
2005kd	lln	2007C	lb/c
2005mz	la	2007D	lc
2006E	la	20071	lc
2006T	llb	2007S	la
2006X	la	2007Y	la ?
2006aj	lc	2007aa	
2006at		2007af	la

SN	Туре	SN	Туре
2005am	la	2006bc	II
2005bc	la	2006bp	IIP
2005bf	lb/c	2006bv	lln
2005cf	la	2006dd	la
2005cs	- 11	2006dm	la
2005da	lc	2006dn	lc
2005df	la	2006ej	la
2005ek	lc	2006jc	lb
2005gj	la	2006lc	lb/c
2005hk	la	2006gy	lln
2005ip	lln	2006lt	lb
2005ke	la	2006mr	la
2005kd	lln	2007C	lb/c
2005mz	la	2007D	lc
2006E	la	20071	lc
2006T	llb	2007S	la
2006X	la	2007Y	la ?
2006aj	lc	2007aa	<u> </u>
2006at	II	2007af	la

SN	Туре	SN	Туре
2005am	la	2006bc	Ш
2005bc	la	2006bp	IIP
2005bf	lb/c	2006bv	lln
2005cf	la	2006dd	la
2005cs	II	2006dm	la
2005da	lc	2006dn	lc
2005df	la	2006ej	la
2005ek	lc	2006jc	lb
2005gj	la	2006lc	lb/c
2005hk	la	2006gy	lln
2005ip	lln	2006lt	lb
2005ke	la	2006mr	la
2005kd	lln	2007C	lb/c
2005mz	la	2007D	lc
2006E	la	20071	lc
2006T	llb	2007S	la
2006X	la	2007Y	la ?
2006aj	lc	2007aa	
2006at	<u> </u>	2007af	la

SN	Туре	SN	Туре
2005am	la	2006bc	11
2005bc	la	2006bp	IIP
2005bf	lb/c	2006bv	lln
2005cf	la	2006dd	la
2005cs	II	2006dm	la
2005da	lc	2006dn	lc
2005df	la	2006ej	la
2005ek	lc	2006jc	lb
2005gj	la	2006lc	lb/c
2005hk	la	2006gy	lln
2005ip	Iln	2006lt	lb
2005ke	la	2006mr	la
2005kd	Iln	2007C	lb/c
2005mz	la	2007D	lc
2006E	la	20071	lc
2006T	llb	2007S	la
2006X	la	2007Y	la ?
2006aj	lc	2007aa	I
2006at		2007af	la

Primary Objectives

Thermonuclear SNe:

- UV as another window to probe of the explosion physics: Iron-peak line blanketing occurs in the UV. Early epochs probe the iron near the surface. Absorption of UV leads to more opt emission.
- Create template lightcurves and explore their use as UV standard can With increasing redshift, rest-frame UV emission is shifted into the opt/NIR. Thus, UV observations of local SNe Ia permit the creation of UV templates against which high-z SNe can be compared.
- Search for CSM interaction in the UV (excess, spectra) and in X-rays

Swift vs Ground-Based Photometry

Magnitude

16

18

AN THE AREAS

High level of agreement between Ground-based and *Swift* V, B, U Photometry

Rogue points being investigated

Swift vs Ground-Based Photometry

18

A 44A A A

Ground-based and Swift V, B, U Photometry

Rogue points being investigated

Swift vs Ground-Based Photometry

18

Rogue points being investigated

SN Phototyping with UV Colors

UV Light Curves

UV Supernovae

Comparison of Observations near 2750 A

UV Light Curves

UV Supernovae

Comparison of Observations near 2750 and 1800 A

UV Light Curves

- \succ The UV light curves have similar shapes.
- The UV light curves appear more homogenous than the opt light curve
- Light curves were shifted in time and magnitude to fit template.

UV Template

- Lightcurves are fitted to the UVW1 template.
- This improves the peak date and magnitude determination.
- The UV template rises quicker and fades slightly slower than the U-band template.

UV Standard Candles

> SNe that are opt bright are also bright in the UV

The most luminous SN ever? $M_V = -22$, rise time >50 days See papers by Smith et al. 2007 and Ofek et al. 2007

SN 2006gy

Two Swift UVOT and XRT observations.

SN 2006gy recovered in the optical with UVOT using image subtraction.

The non-detection with Swift XRT places tight upper limits on the massloss rate of the progenitor, $M < 10^{-4} M_{\odot} \text{ yr}^{-1}$

Optical, but no UV emission detected from SN 2006gy

UVOT ultraviolet

XRT X-rays (258 ks)

- First detection of a type Ia SN in X-rays from CSM interaction?
- Mass-loss rate of the progenitor's companion $3 \times 10^{-6} M_{\odot}$ yr⁻¹
- CON density 1 ... 107 am=3 at a distance of 2 ... 1015 am

Swift UV lightcurves of type la supernovae

UV lightcurve shapes of Type Ia supernovae are surprisingly similar ... except:

- Excess ultraviolet emission detected for SN 2005ke
- Caused by the interaction of the supernova shock with dense CSM?
- Evidence for a companion star?

First tentative detection of CSM interaction for a SN Ia in X-rays

- UV excess independently confirms CSM interaction
- > Direct obs. evidence for a companion star in a SN la system?
- Companion's mass-loss rate and CSM matter density can be measured for the first time for a SN Ia:

 $M = 3 \times 10^{-6} M_{\odot} \text{ yr}^{-1}$ $\rho_{\text{CSM}} = 4 \times 10^7 \text{ cm}^{-3} \text{ at a distance of } r = 3 \times 10^{15} \text{ cm}$

SN la Systems

A thermonuclear (Type Ia) supernova is a white dwarf that accretes matter from companion star and explodes as it reaches the Chandrasekhar mass (1.4x Sun) Unsolved question: What is the companion star? Two scenarios how thermonuclear SN (Type Ia) systems could look like

Primary Objectives

Core-Collapse SNe:

- Search for signatures of CSM interaction using XRT and UVOT.
- > Exploring the general UV properties with photometry and spectra.

UVOT Lightcurves of SNe 12 SN2005am - Ia × SN2005cf - Ia SN2005cs - II KSN2005df - Ia SN2005hk - Ia SN2005ke - Ia ⊖ SN2006E - Ia SN2006X - Ia - ★ SN2006aj - Ic - SN2006at - II O-♦ SN2006bp - II

SN 2006X and SN 1979C in M100

UVOT V, B, U

UVOT UVW1, UVW2, UVM2

XRT 0.2-10 keV

- SN 2006X (young type Ia) not detected in the UV and in X-rays
- SN 1979C (type II) is one of the oldest SN still visible in UV and X-rays

SN 1979C in M100

XMM-Newton

Swift XRT

Chandra ACIS

- High X-ray luminosity, $L_x = 8 \times 10^{38}$ ergs/s (0.3–2 keV) at t = 26 years
- High and constant mass-loss rate of 1.5×10^{-4} M_{\odot} yr⁻¹ over >20,000 yrs in the history of the progenitor

SNe 1978K and 1979C

- SNe 1979C and 1978K are the oldest known X-ray emitting SNe
- Surprisingly similar evolution
- Evolution is best described by a *t*² rise followed by a *t*⁻³ decline

Swift optical

Swift X-rays

Late-time X-ray observations with *Rosat*, *XMM-Newton*, *Chandra*, and *Swift* allowed to construct the long-term X-ray light curve over a >12 year period.

SN 1993J

Mass-Loss Rates of SNe 93J, 78K and 79

SN 2005kd

- Type IIn SN
- High X-ray luminosity, $L_x = 1.5 \times 10^{41}$ ergs/s (0.2–10 keV)
- High mass-loss rate of some 10⁻⁴ M_☉ vr⁻¹

- Type IIn SN at 30 Mpc
- High X-ray luminosity, $L_x = 1.6 \times 10^{40}$ ergs/s (0.2–10 keV)
- High mass-loss rate of some 10⁻⁴ M_☉ yr⁻¹

The brightest SN observed by Swift (13 mag)

SN 2006jc is detected in X-rays with Chandra on day 40 after explosion and showed a brightening in X-rays in the Swift obs, mass-loss rate $9 \times 10^{-5} M_{\odot} \text{ yr}$

Brightening in X-rays: dense shell around the site of the explosion?

SN 2006jc

Blue supergiant at the end of its life.

Instability develops in the outer payers leads to ejection of its outer laye

Ejected material has formed a shell after 2 years.

Core-collapse of star leads to formation of outgoing SN shock.

Shock hits the shell and heats to X-ray temperatures.

SN 2006bp in NGC 3953

Swift optical

- Type IIP ('plateau') SN at d = 14.9 Mpc
- Observed with Swift <1 day after the explosion
- Detection of X-ray emission < 1 day after the explosion
- Earliest detection of a SN in X-rays (minus GRB/SN), $L_x = 2 \times 10^{39}$ ergs/s

SN 2006bp in NGC 3953

- Daily *Swift* observations allow timing analysis of X-ray flux
- SN would have been missed with any other observatory (XMM, Chandra)
- With Swift we are probing a previously unexplored time domain for SNe
- The SN is fading below the detection threshold within 10 days
- Detection of previously unknown, variable ULX in the host galaxy

SN 2006bp in NGC 3953

• Recovered in an XMM-Newton DDT observation 21 days after outburst

• X-rays is inconsistent with inverse Compton scattered photospheric photons on relativistic electrons due to high required Lorentz factors (~10–100)

Swift Mugshots of Supernovae

38 SNe have been observed with Swift to date, from 1-200 days after the explos

Summary

- Due to the fast response, flexible scheduling and multi-λ coverage (opt+UV+X-rays, both photometry and spectroscopy), Swift is a perfectly suited to study SNe.
- Results obtained so far demonstrate the high potential of Swift.
 - SNe la UV light curve templates are being created,
 - Efforts are being made to establish SNe Ia as UV standard candles with large implications for cosmology and future missions (SNAP, et
 - UV and X-rays as probes for CSM interaction (UV excess, UV grism early X-ray detections, densely sampled X-ray light curves, etc).
 X-ray detection detection rate dramatically increased from <2% pre-Swift to >20%.
- Your input is needed:

The more interest of the community to use *Swift*, and the more Swift UVOT and XRT papers, the brighter is Swift's prospect in the future.