Modeling Turbulent (Thermonuclear) Combustion

Wolfgang Hillebrandt MPI für Astrophysik Garching

KITP, UCSB, February 22, 2006

The history of SuCCESs

(Supernova Combustion Code for Explosion Simulations)

- ➤ Jens Niemeyer (1994)
- ➤ Martin Reinecke (1996 2002)
- > Wolfram Schmidt (2001)
- > Fritz Röpke (2001)
- ➤ Michael Fink (2006)

The "standard model"

- White dwarf in a binary system
- Chandrasekhar mass by mass transfer

How does the model work?

Density $\sim 10^9$ - 10^{10} g/cm

Temperature: a few 10⁹ K

Radii: a few 1000 km

Explosion energy: Fusion C+C, C+O, $O+O \rightarrow "Fe"$

Laminar burning velocity: $U_{L} \sim 100 \text{ km/s} << U_{S}$

Too little is burned!

Some fundamentals of combustion theory

The "Hugoniot-function" for the burned gas,

$$H_2(\tau,p) \equiv E_2(\tau,p) - E_2(\tau_1,p_1) + (\tau - \tau_1)(p + p_1)/2$$

and the "Rayleigh-condition"

$$v_B^2 = -(p_2 - p_1)/(\tau_2 - \tau_1); p_2 - p_1 < \tau_2 - \tau_1$$

$$(\tau = 1/\rho, "1" = unburned state, "2" = burned state)$$

("Jump conditions" from conservation laws; analogous to shock waves)

Observed in "real" combustion experiments:

Only weak deflagrations and Chapman-Jouguet detonations!

What is the mode of nuclear burning in SNe Ia?

"Detonation":

(Super-) Sonic front;

heating to ignition by a shock wave.

> "Deflagration":

Subsonic front;

heating to ignition by heat diffusion.

Strong Si-lines at maximum light:

Pure detonations are excluded (Arnett, 1969)!

(But possibly at lower densities: DDT???)

The physics of turbulent combustion

- ➤ Everydays experience:

 Turbulence increases the burning velocity.
- ➤ In a star:

 Reynoldsnumber ~ 10¹⁴!
- In the limit of strong turbulence: $U_B \sim V_T$!
- Physics of thermonuclear burning is very similar to premixed chemical flames.

A couple of definitions:

Kolmogorov (length) scale

$$\eta := (v^3/\epsilon)^{1/4}$$

(Turbulent) Reynolds number

$$Re := v'/s_L \cdot 1/l_F$$

(Turbulent) Damköhler number

$$Da := s_L/v' \cdot 1/l_F$$

(Turbulent) Karlovitz number

$$Ka := l_F^2/\eta^2$$

$$\Rightarrow$$
 Re = Da² · Ka²

 $\log(v'/s_L)$

Simulating the relevant scales

Gibson scale $s_L = v$ ': below turbulence does not affect flame propagation

Burning regimes of pre-mixed flames

1. Cellular burning, wrinkled flamelets

Burning regimes of pre-mixed flames

1. Cellular burning, wrinkled flamelets

$$u_{cell} = s_L [1+\epsilon(\mu)]; \mu = \rho_b/\rho_u,$$

$$\epsilon(\mu) \approx 0.41 (1-\mu)^2$$

Or: "Fractal model"

$$u_{\text{cell}}(1) = s_{\text{L}} (1/l_{\text{crit}})^{D-1}$$

The Landau-Darrieus instability and its interaction with turbulence:

Quiescent fuel

3.0×10 2.5×10 2.0x10 હિં ≻ 1.5×10⁴ 1.0×10⁴ 5.0×10³ 1.5×10⁴ × [cm] 2.0x10⁴ 1.0x10⁴ log[abs(vort)] time = 0.00 ms 0.00 1.00 2.00 3.00 4.00

(Röpke et al., 2003a)

The Landau-Darrieus instability and its interaction with turbulence:

Strong vortical flow

(Röpke et al., 2003b)

Burning regimes of pre-mixed flames

2. The corrugated flamelet regime

Transition at the "Gibson scale":

$$v(l_{Gibs}) = u_{cell}(l_{Gibs})$$

In the limit of strong turbulence:

$$s_{turb}$$
 (1) \approx v'(1), 1 > l_{Gibs} (independent of $s_L!!!$)

$$d_{turb} \approx 1$$
 ("turbulent flame brush")

Fully developed turbulence?

3-D "direct"
numerical simulations
of flames moving in
white dwarf matter:
Energy

$$\rho = 2.9 \cdot 10^9 \, \text{gcm}^{-3}$$

$$V/s_{lam} = 4$$

$$V/c_0 = 0.043$$

(Schmidt et al., 2004)

Fully developed turbulence?

3-D "direct"
numerical simulations
of flames moving in
white dwarf matter:
Vorticity

$$\rho = 2.9 \cdot 10^9 \, \text{gcm}^{-3}$$

$$V/s_{lam} = 4$$

$$V/c_0 = 0.043$$

(Schmidt et al., 2004)

Burning regimes of pre-mixed flames

3. The distributed-burning

Burning regimes of pre-mixed flames

3. The distributed-burning

Turbulent eddies interact with the flame:

$$l_F \ge l_{Gibs}$$

Rough estimate ("Damköhler scaling"):

$$s_{turb}/s_L \approx const (D_t/D)^{1/2}$$
 (dependent on $s_L !!!!$)

$$const = O(1)$$

Transition to detonation possible???

Application to type Ia supernova

Niemeyer & Woosley (1997)

Burning regimes of pre-mixed flames

4. The Rayleigh-Taylor regime

Burning regimes of pre-mixed flames

4. The Rayleigh-Taylor regime

$$v_{RT} = B \sqrt{(g_{eff} 1)}$$
; $B \approx 0.5$; $g_{eff} = At \cdot g$

Sharp-Wheeler model:

$$r_{sw} \approx 0.05 g_{eff} t^2$$
; $v_{sw} \approx 0.1 g_{eff} t$;

$$1_{\rm tur/RT} \approx 10^6 \, \rm cm$$

Effective burning velocities in SN Ia

Niemeyer & Woosley (1997)

How to model thermonuclear flames?

- □ The "flames" cannot be resolved numerically.
- The amplitutes of turbulent velocity fluctuations in the length scale of the flame are determined on the integral scale.

$$\partial G/\partial t = -\mathcal{D}_f \nabla G$$

$$\mathcal{D}_f = \mathbf{v}_u + \mathbf{s}_{tur} \mathbf{n}; |\nabla G| = 1$$

Some test of the code

Planar flame

Circular flame

Reinecke et al. (1999)

Some test of the code (ctn.)

Merging circular flames

Hydrogen-in-air flames

Reinecke et al. (1999)

Application to laboratory flames (hydrogen in air)

The method can reproduce terrestrial experiments well! (Smiljanowski et al. 1997)

Application to the SN Ia problem

One rising blob (in 2D)

Reinecke et al. (1997)

Application to the SN Ia problem

One rising blob (in 2D)

Reinecke et al. (1997)

Convergence tests in 2D

Global results are independent of the numerical resolution!

Reinecke et al. (1999, 2002)

$2D \Rightarrow 3D$

Because of larger surface area: More energy is produced!

Reinecke et al. (2001) (See also Gamezo et al., 2003)

3D models: The best we could do (until recently):

0.6s

Mod b30_3d

(Reinecke et al., 2003)

Recent modifications of the code:

1. Moving grid

Röpke (2004)

2. Full star (" 4π ")

Röpke & Hillebrandt (2004)

A high-resolution model ("the SNOB run")

- "4π"
- > 1024³ grid
- initial resolution near the center ≈ 800m
- > moving grid
- Local & dynamical sgsmodel
- ~ 1000 h on 512 processors, IBM/Power4, at RZG

Röpke et al. (2006)

Turbulence?

0.25s

0.50s

0.75s

Schmidt et al. (in preparation)

Some (preliminary) results:

- $E_{kin} = 8.1 \cdot 10^{50} \, erg$
- ► Iron-group nuclei: 0.61 M_{sun} (~ 0.41 M_{sun} ⁵⁶Ni)
- ► Intermediate-mass nuclei: 0.43 M_{sun} (from hydro)
- Unburnt C+O: 0.37 M_{sun} (from hydro) (less than 0.08 M_{sun} at v<8000km/s)
- $ightharpoonup Vmax \approx 17,000 \text{ km/s}$

Good agreement with observations!

Questions and challenges (to theory)

> <u>Ignition conditions:</u>

How do WDs reach M_{Ch}? Center/off-center ignition? One/multiple "points"?

Combustion modeling:

Interaction of nuclear flames with turbulence;

"distributed burning"; "active turbulent combustion"?

Deflagration/detonation transition: Does it happen? Is it

"needed"?

➤ New generation of "full-star" models:

Light curves? Spectra?

> Other progenitors:

Mergers? Sub-Chandrasekhars?