
The Physics of Cellular Detonations and the Instability of Advective-acoustic Cycles

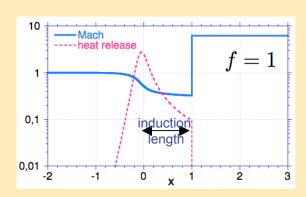
Thierry Foglizzo CEA Saclay & KITP

OUTLINE

The basics of unstable detonations

The formalism of advective-acoustic cycles

The basics of stationary detonations

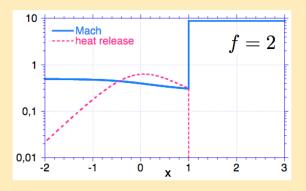

ZND: Zeldovich, von Neumann and Döring, 1940

perfect gas, adiabatic index γ

-self-sustained (Chapman-Jouguet) detonation

$$\frac{v_{\text{CJ}}^2}{c_0^2} = 1 + (\gamma^2 - 1)\frac{Q}{c_0^2} + \left\{ \left[1 + (\gamma^2 - 1)\frac{Q}{c_0^2} \right]^2 - 1 \right\}^{\frac{1}{2}}$$

-overdrive parameter f $f \equiv rac{v_{
m D}^2}{v_{
m CJ}^2}$

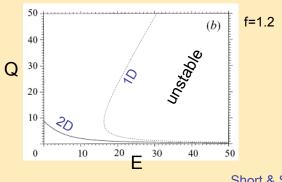

simplest chemistry: one-step Arrhenius kinetics

$$rac{D\lambda}{Dt} = r \propto (1-\lambda) \exp\left(-rac{E}{kT}
ight)$$
 reaction rate, activation energy E

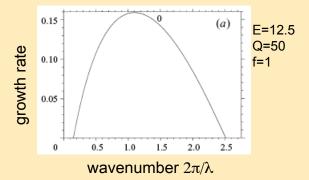
 $rac{DS}{Dt} \propto rac{Q
ho r}{P}$ entropy equation, total heat release Q

 $\frac{Dv}{Dt} = -\frac{\nabla P}{\rho}$ Euler equation

 $rac{D
ho}{Dt} +
ho
abla v = 0$ mass conservation

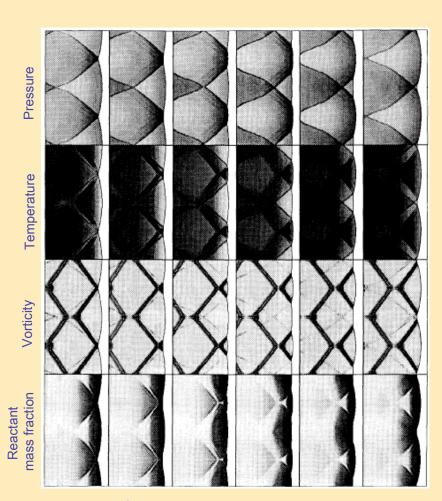


Instability of detonations


- experiments
- numerical simulations
- linear stability analysis

Linear stability analysis:

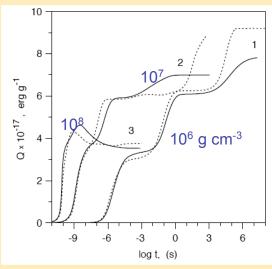
Most detonations are unstable in 2D (Erpenbeck 1962-1970)


Short & Stewart 1998

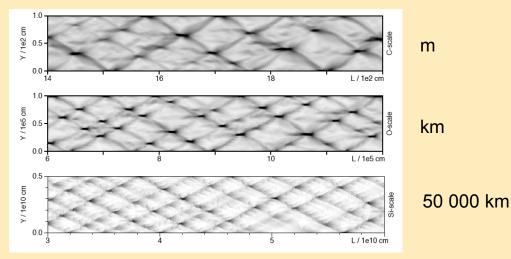
cell size ~ wavelength of the most unstable mode
~3-20 induction length

why?

analytical asymptotic approach: Clavin, He & Williams 1997: γ~1, E>>1, f>>1 Short & Stewart 1999: Q<<1



Bourlioux & Majda 1992


Cellular instability of detonations in SNIa

Boisseau et al. 1996, Gamezzo et al. 1999, Timmes et al. 2000

REDUCED NUCLEAR REACTION NETWORK				
N	Reaction			
1	3 ⁴ He ⇌ ¹² C			
2	$^{12}C + ^{12}C \rightleftharpoons ^{4}He + ^{20}Ne$			
3	$^{12}C + ^{12}C \rightleftharpoons ^{24}Mg$			
4	$^{12}C + ^{16}O \rightleftharpoons ^{4}He + ^{24}Mg$			
5	$^{12}\text{C} + ^{16}\text{O} \rightleftharpoons ^{28}\text{Si}$			
6	¹⁶ O + ¹⁶ O ⇌ ⁴ He + ²⁸ Si			
7	$^{16}O + ^{16}O \rightleftharpoons ^{32}S$			
8	$^{4}\text{He} + {}^{12}\text{C} \rightleftharpoons {}^{16}\text{O}$			
9	⁴ He + ¹⁶ O ⇌ ²⁰ Ne			
10	$^{4}\text{He} + ^{20}\text{Ne} \rightleftharpoons ^{24}\text{Mg}$			
11	$^{4}\text{He} + ^{24}\text{Mg} \rightleftharpoons ^{28}\text{Si}$			
12	$^{4}\text{He} + ^{28}\text{Si} \rightleftharpoons ^{32}\text{S}$			
13	$^{4}\text{He} + {}^{32}\text{S} \rightleftharpoons {}^{36}\text{Ar}$			
14	⁴ He + ³⁶ Ar ⇌ ⁴⁰ Ca			
15	⁴He + ⁴0Ca ⇌ ⁴⁴Ti			
16	⁴ He + ⁴⁴ Ti ⇌ ⁴⁸ Cr			
17	$^{4}\text{He} + {^{48}\text{Cr}} \rightleftharpoons {^{52}\text{Fe}}$			
18	$^{4}\text{He} + {}^{52}\text{Fe} \rightleftharpoons {}^{56}\text{Ni}$			

Gamezo et al. 1999

Gamezo et al. 1999, (5 10⁶ g cm⁻³)

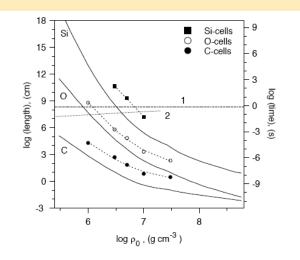
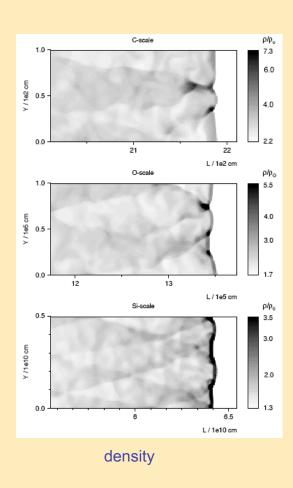
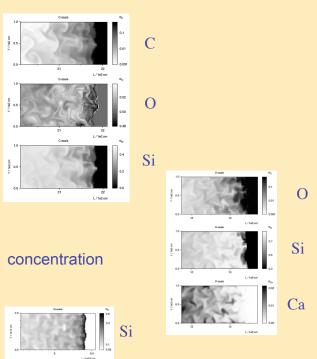



Fig. 5.—Key length scales and timescales as functions of initial density for self-sustained detonations. The solid lines are the half-reaction lengths and times for steady state one-dimensional detonations. The points are the detonation cell sizes for two-dimensional cellular detonations. The horizontal dotted line 1 shows the typical size of a Chandrasekhar mass white dwarf, $\sim 2 \times 10^8$ cm. The dotted line 2 gives the scale of the density gradient, i.e., the length over which the density changes by a factor of 2 for a typical preexpanded white dwarf.


1D instability if ρ >2 10⁷ g cm⁻³ (Khoklov 1993)

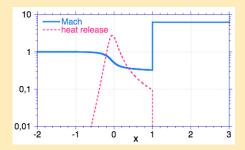
Effect of cellular detonations on SNIa

C-scale Q 0.04 0.03 0.01 1.5 ×10² 1.0 O-scale 0.04 0.03 g_ 0.02 · 0.01 0.00 -1.5 ×10⁵ 1.0 0.04 0.03 0.01 0.00 0.8 ×10¹⁰ concentration & energy release

Gamezo et al. 1999, (5 10⁶ g cm⁻³)

-increase of the half reaction lengths:

+30% for Si

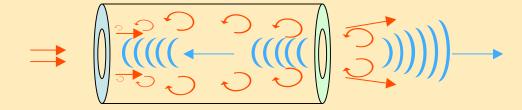

+60% for C and O

-unreacted and overreacted regions: concentration inhomogeneities

Why should detonations be unstable?

bility of a steady detonation. The instability arises due to a positive feedback between hydrodynamical fluctuations and burning since reaction rates strongly depend on temperature (Schelkin 1959).

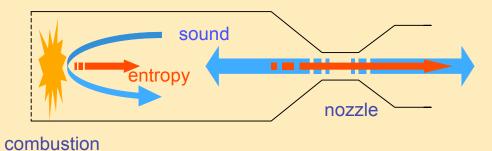
Khokhlov 1993


The idea of a feedback loop between the shock and the region of burning is not new

but it might be further developed, quantitatively, using a new formalism

vibrations in Ariane 5: segmented solid propergol *Mettenleiter et al. (2000)*

« Aero-acoustic » instabilities


- advected perturbations
- acoustic feedback
- « vortical-acoustic » cycle

whistling kettle Chanaud & Powell (1965)

• « entropic-acoustic » cycle

rumble instability of ramjet combustors

Abouseif, Keklak & Toong (1984)

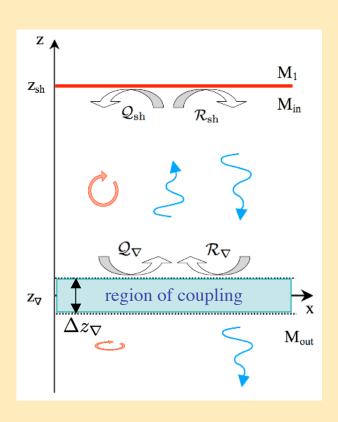
Advective-acoustic coupling: 2 types of feedback

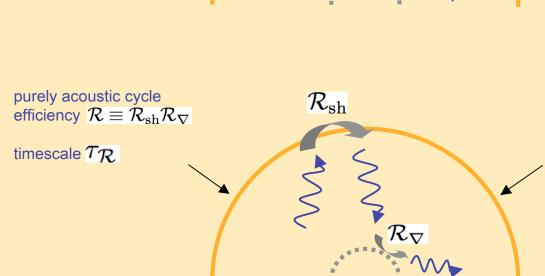
advection of entropy

« entropic-acoustic » cycle

enthalpy $\Delta E = \delta m(h_2 - h_1)$ acoustic emission
(Foglizzo & Tagger 2000, adiabatic)

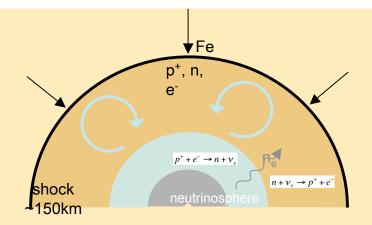
advection of vorticity

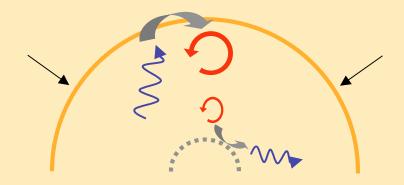

« vortical-acoustic » cycle

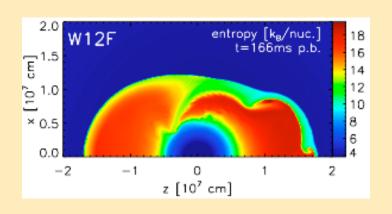


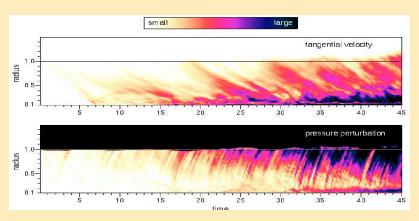
The formalism Q, R, τ_Q , τ_R of advective-acoustic instabilities

advective-acoustic cycle efficiency $\mathcal{Q} \equiv \mathcal{Q}_{\mathrm{sh}} \mathcal{Q}_{\nabla}$


timescale $au_{\mathcal{Q}}$




 $\mathcal{Q}_{
m sh}$


$$\mathcal{Q}e^{i\omega\tau_{\mathcal{Q}}} + \mathcal{R}e^{i\omega\tau_{\mathcal{R}}} = 1$$

Core-collapse supernova: advective-acoustic cycle of a stalled accretion shock (SASI)

Evidence for a vortical-acoustic cycle (Blondin et al. 2003)

Blondin et al. '03, Ohnishi et al. '06, Blondin & Mezzacappa '06 Foglizzo et al. '07, Yamasaki & Yamada '07

Some beautiful (possible) consequences of SASI

-Neutron star kicks (Scheck et al. 2004, 2006)

VOLUME 92, NUMBER 1 PHYSICAL REVIEW LETTERS week ending 9 JANUARY 2004

Pulsar Recoil by Large-Scale Anisotropies in Supernova Explosions

L. Scheck, ¹ T. Plewa, ^{2,3} H.-Th. Janka, ¹ K. Kifonidis, ¹ and E. Müller ¹

-New explosion mechanism driven by acoustic waves, initiated by the advective-acoustic cycle (Burrows et al. 2005, 2006)

A NEW MECHANISM FOR CORE-COLLAPSE SUPERNOVA EXPLOSIONS

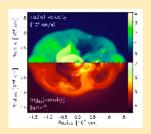
A. Burrows, E. Livne, L. Dessart, C. D. Ott, And J. Murphy Received 2005 October 10: accepted 2005 November 28

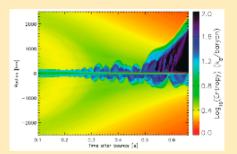
-Seed the H/He mixing in the neutrino-driven explosion of 1987A, 1s<t<10⁴s (*Kifonidis et al.* 2006)

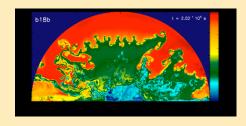
Non-spherical core collapse supernovae

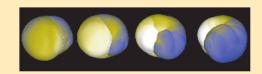
II. The late-time evolution of globally anisotropic neutrino-driven explosions and their implications for SN 1987 A*

K. Kifonidis¹, T. Plewa², L. Scheck¹, H.-Th. Janka¹, and E. Müller¹

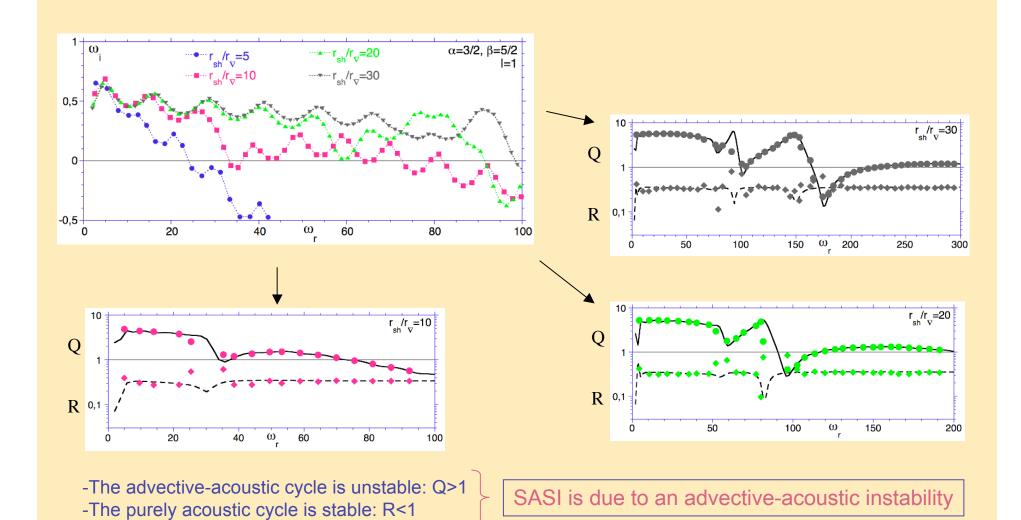

-Spin up of the neutron star (Blondin & Mezzacappa 2007)

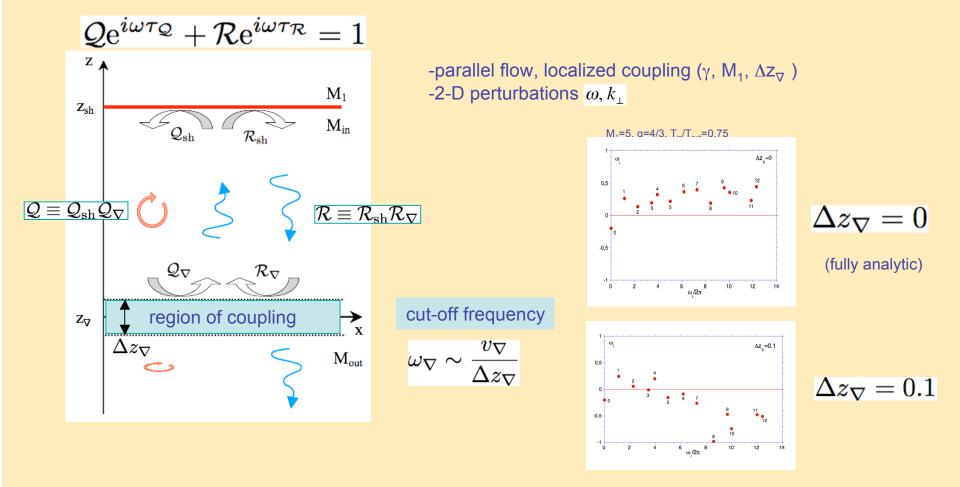

LETTERS


Pulsar spins from an instability in the accretion shock of supernovae


John M. Blondin¹ & Anthony Mezzacappa²

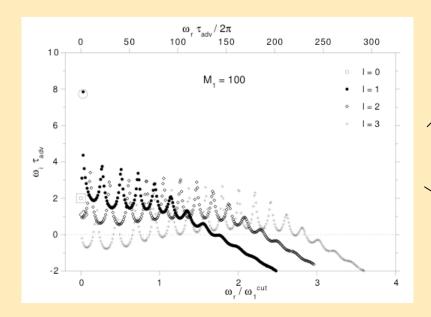
- Onset of a neutrino-driven explosion, 15 M star (T. Janka, Aspen 2007)





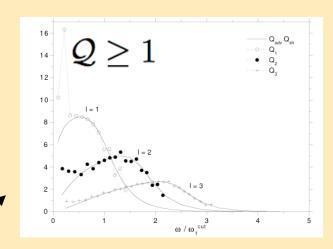
Core-collapse SN: determination of the instability mechanism behind SASI

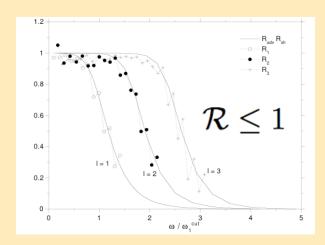
(Foglizzo, Galletti, Scheck & Janka 2007)


A generic example of advective-acoustic instabilities

cut-off frequency:

- -> SASI is a low frequency instability
- -> Pathologies of the square wave model for detonations and importance of the size of the region of heat release (Zaidel 1961, Clavin et al. 1997, Short & Sharpe 2003)


Bondi-Hoyle-Lyttleton accretion



Advective-acoustic cycle in a transonic flow

Foglizzo (2001, 2002), Foglizzo, Galletti & Ruffert (2005)

identification of the 2 cycles (Q, $\tau_{\text{Q}})$ and (R, $\tau_{\text{R}})$

Conclusions

The instability of detonations can be viewed as an advective-acoustic cycle between the shock and the region of heat release

The Q,τ_Q R,τ_R formalism will be applied to better understand unstable detonations

- Entropic-acoustic instability of pulsating detonations (1D)
- Vortical-acoustic instability of cellular detonations (2D)
- sensitivity to the size of the region of heat release

z ,	$egin{array}{cccc} & & & & M_1 & & & \\ & & & & & & M_{ m in} & & & & \\ & & & & & & \mathcal{R}_{ m sh} & & & & M_{ m in} & & & \\ & & & & & & & \mathcal{R}_{ m sh} & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$
	0 3 3
z _⊽	Q_{∇} R_{∇} ΔZ_{∇} X
	M _{out}

	cooling	adiabatic	heating	et al. '00
decelerated, subsonic	Density 1,000 km Entropy			95, Timmes
accelerated, subsonic		C	20	Blondin et al. '03, Ruffert
accelerated, transonic			23 23 2 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Scheck et al. '04, Blond