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OUTLINE

e Introduction
* Basics of ultracompact binary evolution.

* Some open questions.

e Diagnostics of population properties from /54 observations.

e Physics important to outcomes at contact that can be probed with £./54 derived constraints.







Start of Mass Transfer
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Theoretically Uncertain
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Would like to use observations to constrain:
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1. The distribution of contact parameters
(which informs understanding of binary

evolution).




Would like to use observations to constrain:

1. The distribution of contact parameters
(which informs understanding of binary

evolution).

2. Post-contact outcomes as a function of
these parameters.
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At short periods, Pos,
distribution of systems
is in steady state:

n(Porb) X Po_ré
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10 donor’s entropy, mass, and
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Direct Impact Accretion:

With “WD?” donors, orbital separation at
contact is so close in most systems that

accretion stream directly impacts accretor, Disk
spinning it up at cost of orbit’s /.

Stability Criteria (Conservative Mass Transfer):

Direct Impact
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(Marsh & Steeghs 2002)

Condition for Mass Transfer: Ro ~ Ry
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Stable He burning

Weak He Flashes

"Explosive” He Ignition
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SUMMARY

With its detailed view of the galactic WD-ultracompact binary population, 254 will provide
unprecedented constraints on this population’s properties and the physics that shapes it.

Physics important to the outcomes of these system’s early contact phase that will be probed
include:

* Mass transfer instabilities at contact and whether these produce mergers.
* Efficiency of tidal coupling in ultracompact binaries.
* QOutcomes of He-ignition events on the surface of the accretor.

Laundry list of to-do’s (so that all of this could actually be useful):

* Determine realistic orbital period distributions of WD-ultracompact binaries given population
synthesis inputs and examine how each component of population contributes to this distribution.

Quantify across the range of system properties which systems avoid mass transfer instabilities at
contact.

Understand how time-evolving mass transfer rates affect He-ignition events (again as function of
system parameters at contact) on the accretor:

e  Which systems lead to accretor detonation?

e How does this change if systems experiencing unstable mass transfer do not merge as matter of course?




