Simulations of convection and magnetism in stars

Matthew Browning (UC Berkeley)
with Mark Miesch, Sacha Brun
Juri Toomre, Gibor Basri

Why study stellar dynamos?

Ubiquity of convection and magnetism

- Convection in envelopes! Cores! Full interiors!
- Connection of convection, magnetism, rotation
- Convection can build fields through dynamo action

Coronal emission as a proxy for magnetic activity

X-ray emission

Magnetogram

Magnetic activity is correlated with rotation rate

Observed from F to M

More rapid rotation = more activity (to a point)

Pizzolato et al. (2003)

Convection Zone and Radiative Interior

<u>DEEP SHELL</u> VERY TURBULENT CONVECTION (200 Mm)

DRIVES STRONG

<u>DIFFERENTIAL</u>

ROTATION

<u>VAST RANGE OF</u> <u>DYNAMICAL SCALES</u>

GRANULES ~1 Mm
MESOGRANULES ~5 Mm
SUPERGRANULES ~20 Mm
GIANT CELLS ~200+ Mm

Orderly Solar Magnetism

Sunspots: on closer look

Sunspots in one hemisphere share common orientation

Figures: HK Space Museum

Orderly Solar Magnetism

Clues provided by helioseismology

- Tachocline of rotational shear at base of CZ probably stretches toroidal field
- Helical convection in CZ likely also plays role

Building blocks of dynamo action

Motivating issues for 3-D simulations

- How does convection establish strong differential rotation?
- What are the roles of convection and differential rotation in building observed magnetism?

Computational Approach for 3-D Simulations

- Utilize 3-D Anelastic Spherical Harmonic (ASH) code in full spherical geometry
- Realistic stratification, radiative opacity
- Simplified physics: perfect gas, subgrid turbulent transport
- Pre-2006: model bulk of CZ (0.72-0.97R)
- Latest models: include tachocline below

Vigorous and evolving convection

Radial velocity V_r near top of CZ

Broad upflows, narrow downflows

Case E, Brun et al.

Global view of convective patterns

Differential rotation realized

Reasonable contact with helioseismic angular velocity

Crucial role played by Reynolds stresses

Dynamo activity in MHD models

Dynamo Threshold Near Re_m~300

With increasing ME, drop in KE

Final ME ~8% KE

Still solar-like diff. rotn

Convective motions amplify a tiny seed field by several orders of magnitude

Intricate magnetic field

Evolving banded azimuthal field

Radial field in cutaway

Complexity in interleaved radial fields

Global views of complex flows and fields

V_r Field mainly on smaller scales than flow (Pm >1)

B_r Strongest radial fields found in downflows

 B_{φ}

Evolving radial magnetic field

-1000.

0 1000. Gauss

Fluctuating magnetism dominates

Fluctuating fields much stronger than mean fields

Frequent polarity reversals

Polarity flips at irregular intervals of <600 days

The story so far (pre-2006)

- Simulations that model bulk of CZ get reasonable differential rotation (good)
- Strong dynamo action is realized without diminishing that differential rotation, (good) BUT...
- Magnetic fields are mostly fluctuating,
 and exhibit frequent polarity reversalist so good)

Missing crucial "building block" of global dynamo: Organizing shear of tachocline

Why (do we want) a tachocline?

- Strongest radial shear
- Radiative zones are handy: magnetic buoyancy held in check (to a point)
- Other considerations from mean-field theory

Why (does the Sun have) a tachocline?

- A: I don't know (and neither do others)
- Alternate A: Elves
 (aka magnetic fields, gravity waves, anisotropic turbulence, instabilities ...)

But it's there anyway

Solar dynamo with overshooting and shear

- Aim to capture key element of overshooting into underlying stable region
- Emulate tachocline by imposing drag and small entropy variations in radiative zone
- Seek to quantify role of penetration and shear in generating magnetism

A pseudo-tachocline of rotational shear

Weaker angular velocity contrasts than Sun, but still solar-like

Region of strong shear at base of CZ

Browning et al. 2006, ApJL, 648, 157

Pumping, Amplification, and Organization of Toroidal Magnetic Fields

Strongest mean fields below convection zone

Typical mean toroidal field strengths in CZ: ~300 G

Mean toroidal field strengths in stable region: ~3000 G

Mean toroidal field is dominant contributor to total ME below CZ (unlike in CZ where fluctuating fields dominate)

Persistence of Field Polarity

Toroidal field at single latitude

Polarity of overall dipole field component has not flipped in ~9 years of simulated evolution

Summary of solar magnetism simulations

 Simulations with a forced tachocline yield magnetism with several striking properties: predominantly mean fields below CZ, antisymmetric parity of B_Φ, persistence of single

• Proparity of simplifications (large diffusive terms, wide tachocline) remains uncertain: field strength? latitudinal propagation?

Puzzles of A-type Stars

- Strong (kG) surface magnetic fields
- Fields are steady in rotating frame
- "Oblique dipole" geometry
- Central question: what is the origin of the magnetism?
- Two main contenders: fossil and dynamo

Motivating issues for 3-D simulations

- What is nature of penetration and overshooting from convective cores?
- Does the convection drive <u>differential</u> <u>rotation</u> within the core, and in what manner?
- Is magnetic dynamo action realized?
- If so, what are the properties of the magnetism, and in what way does it feed back upon the flows?

Computational Approach for A-star Simulations

- Simulate 2 solar mass stars, at 1 to 4 times solar rotation rate
- Model dynamics of inner 30% of star (CZ + portion of RZ), excluding innermost 3%
- Simplified physics: perfect gas, subgrid turbulent transport, T⁸ energy generation

Vigorous convection in the core

Radial velocity V_r at mid-core in hydro simulations

Broad, sweeping flows that evolve

Browning, Brun & Toomre (2004), ApJ v. 601, 512

Evolution of convective patterns

Radial velocity in longitude-latitude mapping

Penetration into radiative envelope

Prolate convective core, spherical overshooting region

Variation of penetration with radiative zone stiffness

- Simulations
 provide upper
 bound to extent of overshooting
- In stiffest, most turbulent case:

$$d_{ov} \sim 0.21 + 1/2 \cdot 0.05 H_p$$

Character of differential rotation

- Central columns of slow rotation
- More turbulent flows yield greater angular velocity contrasts
- When influence of rotation very weak, central column of fast rotation arises

Dynamo activity in MHD models

With increasing ME, drop in KE

Final ME ~ 90% KE

Convective motions amplify a tiny seed field by many orders of magnitude

Intricate magnetic field

Evolving banded azimuthal field

Radial field in cutaway

Complexity in interleaved radial fields

Topology of core magnetism

- Field on finer scales than flow $(P_m > 1)$
- Tangled radial field, but B_{φ} partly organized into ribbon-like structures

Global views of complex structures

Magnetism reduces differential rotation

Angular velocity contrasts lessened by magnetic field

Interplay of rotation and magnetism

Differential rotation quenched when ME > ~ 40% KE

Fluctuating and mean magnetic fields

Fluctuating fields much stronger than mean fields

But can the fields get out?

- Core magnetic fields likely screened by radiative envelope
- Possibly magnetic buoyancy instability could bring fields outward, but ...
- Recent modeling (MacGregor & Cassinelli; MacDonald & Mullan) suggests this process is too slow for fields like the ones realized here

Stable fossil field configuration

Initial arbitrary field evolves to stable field

Final stable field with mixed poloidal and toroidal components

Argues in favor of fossil field

Braithwaite & Spruit, 2004 Nature

Some A-star findings

 Global simulations of magnetized core convection reveal dynamo action, differential rotation and prolate

- Resulting complex magnetic fields weaken differential rotation
- Magnetism likely hidden from view, though magnetic buoyancy may play a role
- Stable field configurations found, so fossil field a plausible explanation

What about the rest?

• In stars with both convective and radiative zones, interface of shear (tachocline) seems to play major role in building fields

- What happens in stars with no such interface?
- Low mass stars (<0.35 M) are fully convective
 M-dwarfs straddle this boundary:
 potential probe of dynamo physics

Fully convective stars show strong magnetic activity

One probe: Rotation-activity correlation in X-rays

Coronal emission correlated with rotation

Saturation of emission at $L_x/L_{bol}=10^{-3}$

Observed from F to M

Pizzolato et al. (2003)

Log Rossby

WI-dwarfs also show correlation between rotation and activity

M2 and M4 stars show similar trends

I.e., no obvious break in rotation-activity relation (until late-M/early-L)

Mohanty & Basri (2003)

Observations of large-scale magnetic field in fully convective star

Rapidly rotating M-dwarf

Zeeman Doppler reveals large-scale, axisymmetric field (~kG)

But no differential rotation

HOW?

Donati et al. (2006), Science

Summary and reflections

 Simulations suggest crucial role of tachocline in building organized magnetism in Sun-like stars

- In more massive stars, dynamo action also realized, but may have little effect at surface
- Major puzzles of rotation-activity correlation, especially at low mass