The Advanced Compton Telescope

- 1. ACT science goals
- 2. ACT instrument/mission
- 3. NCT balloon payload
- Q: How sensitive?

"to uncover how supernovae and other stellar explosions work to create the elements" -SEU Roadmap 2003

Steve Boggs
Department of Physics
University of California, Berkeley
KITP/UCSB 3/13/07

Do we wait until >2025?

- What sensitivity threshold is interesting?
- 5-10 SNe Ia, $\Delta M_{56}/M_{56} < 10\%$?
- Narrow FoV, pointed telescope?
- Driven by optical triggers?
- What is distance uncertainty at 20 Mpc?

Questions I am working on this week:

- is M₅₆ interesting on its own?
- ΔM_{56} achievable on a small mission
- catalogue of all optical SNe Ia < 50 Mpc in 2005-2006, distances, discovery time
- distance uncertainties to out to Virgo

ACT Overview

Enable high sensitivity γ -ray spectroscopy

Life Cycles of Matter

- ✓ Supernovae & nucleosynthesis
- ✓ Supernova remnants & interstellar medium
- ✓ Neutron stars, pulsars, novae

Black Holes

- ✓ Creation & evolution
- ✓ Lepton vs. hadron jets
- ✓ Deeply buried sources

Fundamental Physics & Cosmology

- ✓ Gamma-ray bursts & first stars
- ✓ History of star formation
- ✓ MeV dark matter

- 100× sensitivity improvement for spectroscopy, imaging & polarization (0.2-10 MeV)
- Advanced 3-D positioning γ-ray spectrometers, 25% sky field-of-view
- LEO equatorial orbit, zenith-pointing survey mode (baseline mission), 80%/orbit

Cosmic High Energy Laboratories Why MeV gamma-rays?

COMPTEL 1-30 MeV Source Catalog

Unique 0.2-10 MeV Science

- nuclear lines
- e-/e+ mass, annihilation
- peak emission: AGN, BHs, GRBs
- polarization

(Schönfelder et al. 2000)

Sources (5 yr)	COMPTEL	ACT
Supernovae	1	100-200
AGN	15	200-500
Galactic	23	300-500
GRBs	31	1000-1500
Novae	0	25-50

"...to explore the profound mysteries of life, space, time and the workings of the universe."

-NASA Space Science Enterprise Strategy 2003

Nuclear Gamma-Rays

Nuclear Gamma-Rays: ~60 keV - 6 MeV

Hard X-rays (Photoabsorption): 10-300 keV

Soft Gamma-Rays (Compton Scattering): 0.3-10 MeV

Atmosphere is opaque at these energies.

$^{56}\text{Ni} \rightarrow ^{56}\text{Co} \rightarrow ^{56}\text{Fe Rough Numbers}$

• optically thin: $\leq 100 \text{ d}$

• peak line: 0.847 MeV

• peak flux: $(2-5)\times10^{-5}$ cm⁻² s⁻¹ (D/10 Mpc)⁻²

• $\Delta E/E \sim 3\% \ (\sim 10,000 \ km/s)$

• local SNe Ia rate: $\sim 1.0 \text{ yr}^{-1} (D/20 \text{ Mpc})^3$

• @ 1×10^{-6} cm⁻² s⁻¹, 25-50 detections/yr

(from Strigari 2006, data from Blanc et al. 2004, Dahlen et al. 2004, & Wood-Vasey 2005)

W7: deflagration

(Milne et al. 2004)

Type Ia Supernovae Cosmic Yardsticks, Alchemists

Goal: study ⁵⁶Ni & ⁵⁶Co emission from the core of Type Ia supernovae.

- 1. **Standard candles** -- characterize the ⁵⁶Ni production, relation to optical
- 2. Explosion physics -- uniquely distinguish explosion physics
- 3. SNe Ia rate, local & cosmic -- direct rates unbiased by extinction

We define the science requirements in terms of the following objective:

ACT must be able to strongly distinguish typical deflagration models from delayed detonation models, even if the supernovae distances are unknown.

Leading to instrumental requirements:

- \triangleright broad (3%) line sensitivity at 0.847 MeV: \sim 7×10⁻⁷ ph/cm²/s
- \triangleright spectral resolution: $\Delta E/E < 1\%$
- ➤ wide field of view: 25% sky

....these lead to 40-50 detections/year (5 @ 15σ)!

Nuclear Line Sensitivity

Primary science requirement: systematic study of SNIa spectra, lightcurves to uniquely determine the explosion mechanism, ⁵⁶Co (0.847 MeV) abundances.

Standard Candle: characterize ⁵⁶Ni production

Requirements: measurement of ⁵⁶Ni production in >100 SNe at >5 σ levels.

Explosion Physics: flame propagation, dynamics

Requirements: high sensitivity (>15 σ) lightcurves and high-resolution spectra ($\Delta E/E<1\%$) of several SNe Ia events of each subclass over the primary 5-year survey.

Simulated 10⁶ s ACT observation of W7 and DD202c at ~25 d for 10 Mpc distance, distinguished easily by their spectral shape.

History of SN Ia & star formation: Cosmic γ-Ray Background

- ✓ first measurement of the MeV CGB
- ✓ bolometric output of SN Ia to $z\sim1-2$
- ✓ trace cosmic star formation rate to $z \sim 1-2$ (with some delays)
- ✓ angular correlations can reveal SN Ia contribution (Zhang & Beacom 2004)

(Strigari et al. 2005)

Compton Telescopes: Then & Now

CGRO/COMPTEL

- ~40 cm³ resolution
- $\Delta E/E \sim 10\%$
- 0.1% efficiency

ACT Enabling Detectors

- 1 mm³ resolution
- $\Delta E/E \sim 0.2-1\%$
- 10-20% efficiency
- background rejection
- polarization, wide FoV

ACT Enabling Technologies

The ACT Vision Mission study identifies the most promising detectors and highest priority technology developments.

Recommendations:

- Ge, thick Si, (LXe)
- low-power readouts
- cryogenics, materials, sims

Property	Si Strip	Ge Strip	Liquid Xe	CZT Strip	Xe μWell
ΔE/E (1 MeV)	0.2-1%	0.2%	3%	1%	1.7%
Spatial Resol.	<1-mm ³	<1-mm ³	<1-mm ³	<1-mm ³	0.2-mm ³
Z density	14 2.3 g/cm ³	32 5.3 g/cm ³	54 3.0 g/cm ³	48 8.3 g/cm ³	54 (3 atm) 0.02 g/cm ³
Volume (achvd.)	60 cm ³	130 cm ³	3000 cm^3	4 cm ³	50 cm ³
Operating T	-30° C	-190° C	-100° C	10° C	20° C

Baseline ACT Instrument

D1: 27 layers 2-mm thick Si

- 10x10 cm2, 64x64 strips
- 3888 det., 248,832 chns
- -30° C, Stirling cycle cooler

D2: 4 layers, 16-mm thick Ge

- 9.2x9.2 cm2, 90x90 strips
- 576 det., 103,680 chns
- 80 K, Turbo-Brayton cooler

BGO: 4-cm thick shield ACD: plastic scintillator

ACT Apples/Oranges Envelope:

- 1850-kg instrument (w/o margin)
- 2000 W instrument (w/o margin)
- Delta IV shroud (~4m dia.)

ACT Mission Configuration

ACT Baseline Science Instrument Performance

Energy range	0.2-10 MeV	
*Spectral resolution	0.2-1%	
*Field of View	25% sky (zenith pointer)	
Sky coverage	80% per orbit	
Angular resolution	~1°	
Point source localization	5'	
Detector area, depth	~12,000 cm ² , 47 g/cm ²	
Effective area	~1000 cm ²	
*3% broad line sensitivity (10 ⁶ s)	1.2×10 ⁻⁶ ph/cm ² /s	
Narrow line sensitivity	5×10 ⁻⁷ ph/cm ² /s	
Continuum sensitivity	(1/E)×10 ⁻⁵ ph/cm ² /s/MeV	
GRB fluence sensitivity	3×10 ⁻⁸ erg/cm ²	
Data mode	Every photon to ground	

^{*}Primary science requirement driven by Type Ia supernovae.

Modern Detector Technologies

- ✓ Excellent spectral resolution ($\Delta E/E < 1\%$) $\rightarrow Ge$, thick Si
- ✓ Fine spatial resolution (<1 mm³) \rightarrow (nearly) *all*
- ✓ Low-energy electron tracking (<500 keV) \rightarrow *thin Si*, *GXe*
- ✓ Very fast timing (<1 ns) \rightarrow LXe, LaBr, Gxe
- ✓ Room-temperature $\rightarrow CdZnTe$, LaBr

Hits

- ightharpoonup Cooling ightharpoonup Ge, thick Si, LXe
- ightharpoonup Efficiency ightharpoonup GXe, thin Si
- ightharpoonup Spectral resolution ightharpoonup LXe, GXe, LaBr, CdZnTe
- ightharpoonupPower ightharpoonup thin Si, GXe

Alternate ACT Designs

- Tracking Si/CdZnTe calorimeter (UCR) →e⁻ tracking, room T limit: power (#strips)
- Ge/BGO shield (UCB) \rightarrow high spectral resolution limit: power (cooling), mass (BGO)
- Thick Si (NRL) → reduce Doppler broadening, minimal cooling
- LXe (Rice, Columbia) → fast timing, good stopping power limit: *mass* (*detector*)
- Gaseous Xe/LaBr₃ (GSFC/UNH) \rightarrow e⁻ tracking limit: *mass*, *power* (#*chns*?)
- LaBr₃ (UNH) \rightarrow fast timing (modern COMPTEL) limit: mass ($LaBr_3$)

ACT Technology Comparisons

What is the real distance uncertainty at 20 Mpc?

ACT Technology Recommendations

- 1. Germanium detectors: enabling technology development
- electrode optimization
- environmental testing
- mfg large numbers

- basic development for thicker detectors
- mfg large numbers

- 3. <u>LXe detectors</u>: laboratory demonstration
- optimized spectral performance

(NCT/UCB)

(NRL)

(LXeGRIT/Columbia/Rice)

ACT Technology Recommendations (Cont.)

- 4. Readout electronics: basic development
- ~1 mW/chn readout
- 0.1 mW preamps

(NICMOS/HST)

- 5. Cryogenics: study and development
- detailed technical study
- enabling development of scaling
- 6. <u>Passive materials</u>: study and development
- low-Z structure
- minimal cryostats
- 7. <u>Simulation toolset</u>: basic development
- integrated simulation package
- tested environmental inputs
- data and imaging analysis software

 \rightarrow Plus, balloon demonstrations of all ACT technologies.

Advanced Compton Telescope Witness to the Fires of Creation

astro-ph/0608532

- full science goals
- detailed performance
- mission design & readiness
- technology recommedations

ACT Collaboration

Steven Boggs^a, James Kurfess^b, James Ryan^c, Elena Aprile^d, Neil Gehrels^e, Marc Kippen^f, Mark Leising^g, Uwe Oberlack^h, Cornelia Wunderer^a, Allen Zychⁱ, Peter Bloser^c, Michael Harris^j, Andrew Hoover^f, Alexei Klimenk^f, Dan Kocevski^h, Mark McConnell³, Peter Milne^k, Elena I. Novikova^b, Bernard Phlips^b, Mark Polsenⁱ, Steven Sturner^e, Derek Tournear^f, Georg Weidenspointner^j, Eric Wulf^b, Andreas Zoglauer^a, Matthew Baring^h, John Beacom^l, Lars Bildsten^m, Charles Dermer^b, Dieter Hartmann^g, Margarita Hernanzⁿ, David Smith^o, Sumner Starrfield^p, for the larger ACT collaboration

^aUniversity of California, Berkeley; ^bNaval Research Laboratory; ^cUniversity of New Hampshire; ^dColumbia University; ^eGoddard Space Flight Center; ^fLos Alamos National Laboratory; ^gClemson University; ^hRice University, ⁱUniversity of California, Riverside; ^jCESR, France; ^kArizona State University; ^lOhio State University; ^mUniversity of California, Santa Barbara; ⁿIEEC-CSIC, Spain; ^oUniversity of California, Santa Cruz; ^pUniversity of Arizona, Tucson

Nuclear Compton Telescope balloon payload

Berkeley, LBNL, NTHU, NCU, NSPO, CESR

Heart of NCT: Cross Strip 3-D GeDs

- 37x37 strips
- 2-mm pitch
- 15-mm thickness
- 81000 mm³ volume
- 1.6 mm³ localization
- ~2.1-keV noise resolution

⁶⁰Co Laboratory Tests 1.173, 1.333 MeV

1.173 MeV processed image

Source	Decay	Energy	Goal
SNe Ia (?)	e ⁺ e ⁻	0.511	36σ map
SNe II/Ib	²⁶ A1	1.809 MeV	36 тар
	⁶⁰ Fe	1.173, 1.333	5σ detect
SNe	⁴⁴ Ti	1.157	resolved line
BHs	e ⁺ e ⁻	≤0.511	discovery

Do we wait until >2025?

- What sensitivity threshold is interesting?
- 5-10 SNe Ia, $\Delta M_{56}/M_{56} < 10\%$?
- Narrow FoV, pointed telescope?
- Driven by optical triggers?
- What is distance uncertainty at 20 Mpc?

Questions I am working on this week:

- is M₅₆ interesting on its own?
- ΔM_{56} achievable on a small mission
- catalogue of all optical SNe Ia < 50 Mpc in 2005-2006, distances, discovery time
- distance uncertainties to out to Virgo