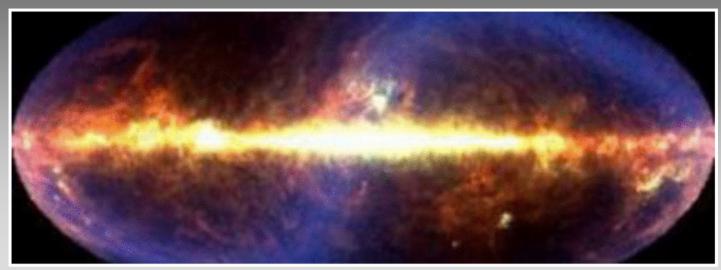


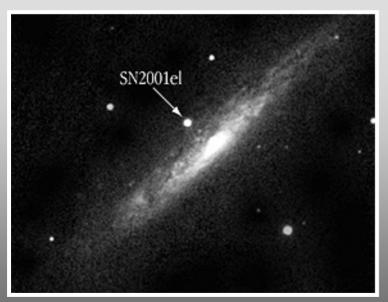
Thermonuclear Supernova A Successful Failure

Tomek Plewa

Paths to Exploding Stars: Accretion and Eruption KITP, UCSB
March 2007



Outline


- Why do we care?
- The explosive ZOO
- Simulation technology: Mueller's eye opener
- Forgotten tale of the ICs
- Close but no cigar: pure deflagrations
- Detonating Failed Deflagrations
- DFD model validation
- Summary

Why Do We Care?

COBE

- SN la are crucial for galactic chemical evolution.
- Probes allowing study of expansion and geometry $(\Omega_{\rm M}, \Omega_{\Lambda})$ of the Universe
- Offer constraints on the nature of dark matter
- Provide astrophysical setting for basic combustion problems.

ESO

SN la Theory Cosmic Timescale

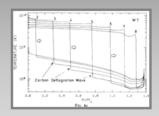
1960s

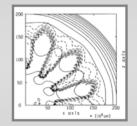
- WD explosion proposed for Type Ia (Hoyle & Fowler)
- 1D detonation model (Arnett)

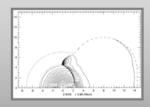
1970s

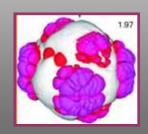
- detonation models (several groups)
- deflagration models (Nomoto)

1980s


- improved 1D deflagration models (Nomoto's group)
- first 2D deflagration model (Mueller & Arnett)


1990s


- 2D and 3D deflagration models, DDT (Khokhlov)
- non-standard models 2D He detonations (Livne & Arnett)
- small scale flame turbulence (Niemeyer & Hillebrandt)


2000s

- 3D deflagration models (NRL, MPA, Barcelona, Chicago)
- 3D DDT models (NRL)

The Explosive Zoo: The D-rich Family

DET DEF subCh DD PDD TDD LDET GCD PRD DFD WDM

DET Arnett (1969), Hansen & Wheeler (1969)

DEF Nomoto et al. (1976)

subCh Woosley & Weaver (1994), Livne & Arnett (1995)

DD Khokhlov (1991)

PDD Ivanova et al. (1974), Khokhlov (1991) (pulsating)

TDD Khokhlov (1991; tampered, common envelope)

LDET Yamaoka et al. (1992; late)

GCD PCL2004

PRD Bravo & Garcia-Senz (2006)

DFD P2007, PK2007

WDM Iben & Tutukov/Webbink (1984), Hachisu et al. (1986)

Benz (1990), Guerrero et al. (2004)

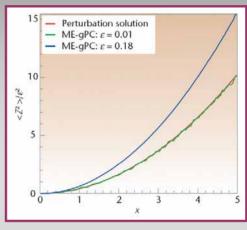
Ewald Müller's Eye Opener

simulate, v. (Oxford English Dictionary, 2nd ed, 1989)

1. a. trans. To assume falsely the appearance or signs of (anything); to feign, pretend, counterfeit, imitate; to profess or suggest (anything) falsely.

Ex.: 1874 L. STEPHEN Hours Libr. (1892) I. i. 9

These [...] show the pleasure which he took in simulating truth.


Simulation Aspects Worth Remembering

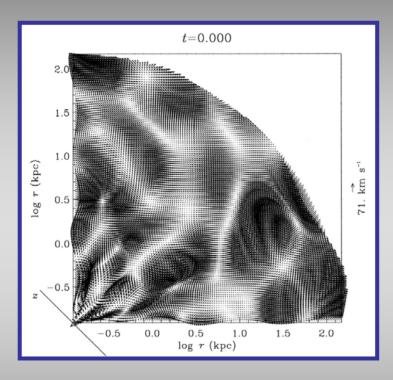
The initial conditions (push) may predetermine the outcome (alpha-group RTI)

Memory of the initial conditions may survive for long

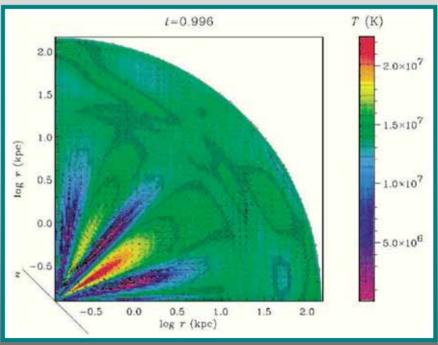
Numerical transients can be important (Zhang/flame)

Insight often comes from different application (Rosner/nova)

Lin et al. (2007)


Simulations have a potential of producing arbitrarily complex unverifiable results

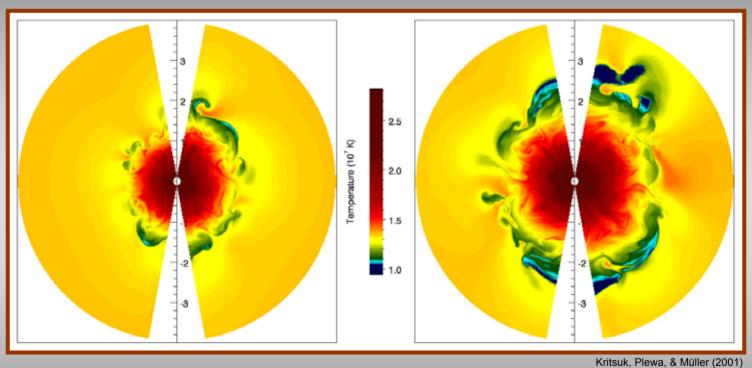
Computer models are becoming more realistic – they are NOT realistic!!



Example: GCD - The Real Story

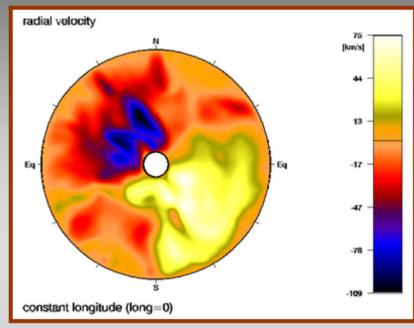
Robust procedure: the outcome insensitive to small perturbations.

Różyczka: What happens if the perturbations are random?

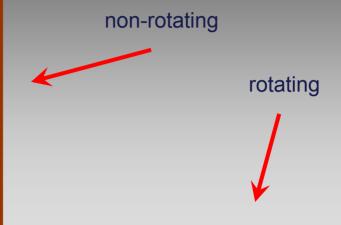


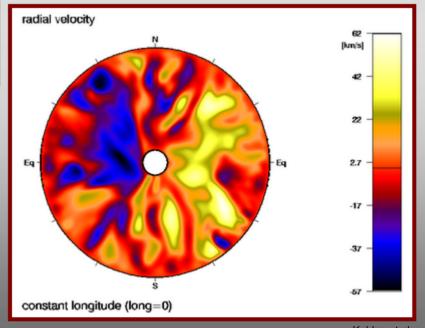
Kritsuk, Böhringer, & Müller (1998)

GCD - The Real Story


Robust procedure: the outcome insensitive to small perturbations.

Large scale core convection...




Simplifying Scenario Warning

Kuhlen, Woosley, & Glatzmaier (2005)

Problem of (over)simplification will reappear later in this talk.

Kuhlen et al.

Larson's Reflection

Numerical methods utilizing finite space and time steps have been applied in many areas of science over the past half-century, and they have expanded enormously our ability to model and understand natural phenomena. Detailed numerical simulations have allowed many new problems to be solved and many old ones to be advanced to a higher level of understanding. But perhaps the most important contribution of numerical techniques to science has been that they have often discovered new phenomena or revealed unexpected results whose importance had not previously been recognized. In doing so, they have greatly expanded our ideas about what can happen in complex systems for which no analytic solutions exist and the laws of physics may allow many outcomes; in effect, they have provided a powerful exploratory tool that can supplement our limited imaginations and provide new insights into how nature works. In astronomy, a classic and elegant example of how numerical techniques can reveal an unexpected richness of phenomena was provided by the work of Toomre and Toomre (1972), who used numerical integration of the restricted three-body problem (two massive bodies and one massless one) to model tidal interactions between galaxies; the results were dramatic and showed immediately that many strikingly peculiar galaxies could be understood as gravitationally interacting systems. This work launched the whole new field of study of galaxy interactions, a phenomenon whose importance had not previously been realized.

Even systems governed by simple laws can quickly develop a level of complexity that surpasses our ability to form a simple mental picture or model, and in such cases computer simulations can often be used to gain understanding. A common way in which complexity can emerge is via the chaotic behavior that characterizes many natural phenomena and makes them unpredictable, even in principle, over extended periods of time. An example is provided by the three-body problem, in which the extreme sensitivity of the orbits to the initial conditions can cause them to diverge exponentially and make them impossible to predict over indefinite periods of time. A three-body system generally decays eventually into a binary system and an

1 + 1 = 2

We often think that when we have completed our study of one we know all about two, because "two" is "one and one." We forget that we still have to make a study of "and."

Sir Arthur Eddington

We need to study and understand separate components.

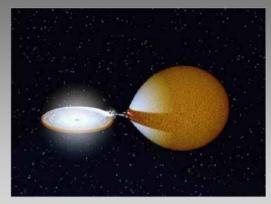
We also need exploratory integrated simulations to learn about connections.

However, we do not even understand one's!!

Some of the One's

Channels for progenitors

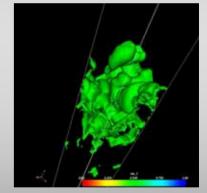
- Binary evolution
- Population synthesis

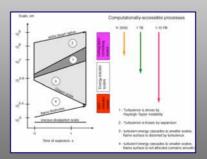

Initial conditions State of the stellar core Metallicity Rotation profile Magnetic fields

Basic physics

- Flame on intermediate scales
- Unsteadiness
- . DDT

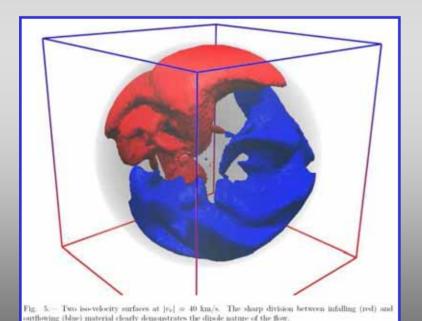
Numerics

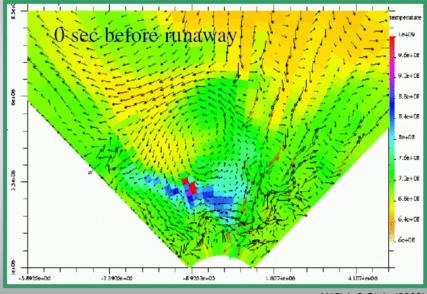

- Multiphysics coupling
- Nucleosynthesis postprocessing


R. Hynes

F. Timmes

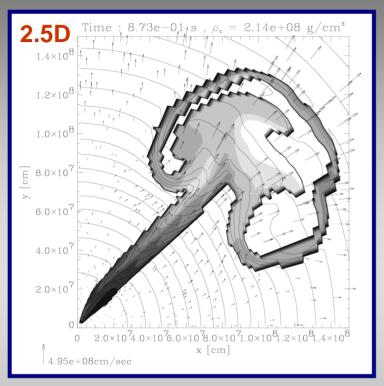
Zhang et al. (2007)

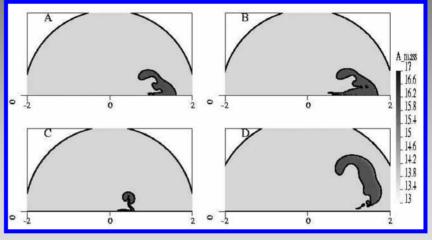

Khokhlov (2003)

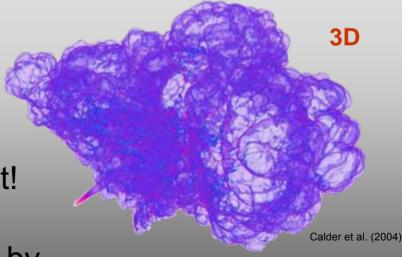

Initial Conditions

one cannot speak of individual blobs but must consider a dense pack of flame born with and maintaining roughly spherical symmetry, the net buoyancy is reduced. For hot matter to flow out, cool matter must also flow in. Perhaps this circulation is impeded. But then the fault may not lie in the stars, but in our codes. Do the codes have sufficient resolution and sufficiently low shear numerical viscosity to allow small blobs to detach from the flame pack and float away? Have they obscured the nature of the solution by starting with unrealistically simple conditions—a central point flame?

Garcia-Senz & Woosley (1995)


Kuhlen, Woosley, & Glatzmeier (2005)


Höflich & Stein (2002)


Single Bubble, Three Different Methods...

Niemeyer, Hillebrandt, & Woosley (1996)

Livne, Asida, & Höflich (2005)

...and virtually the same result!

This is followed by...

larch 22, 2007 Flash Center & KITP

2.5D

Lots of Waiting...

March 22, 2007 Flash Center & KITP

Initial Conditions So Far

Garcia-Senz & Woosley (1995)

Niemeyer, Hillebrandt, & Woosley (1995)

Höflich & Stein (2002)

Woosley, Wunsch, & Kuhlen (2004)

Calder et al. (2004)

Livne, Asida, & Höflich (2005)

Kuhlen, Woosley, & Glatzmeier (2005)

Based on analytic, semi-analytic, and numerical models, the most likely outcome of a mild ignition is the off-center deflagration.

Major Sins of Classic Central Deflagrations

Context: Branch-normal las

- 1. Uniformly mixed ejecta, unburned low-velocity carbon
- 2. Explosion energies too low, need ~50% more burning
- 3. Initial conditions either too idealized or defined ad hoc
- 4. Large Ni-rich structures visible at maximum light
- Insufficient production of intermediate mass elements

Some Recent Evidence

Garcia-Senz et al. (2007)

- difficult to produce > 0.2 M_© of IME
- M_{IMF} correlates with M_{IGF}
- difficult to explain low energy explosion events

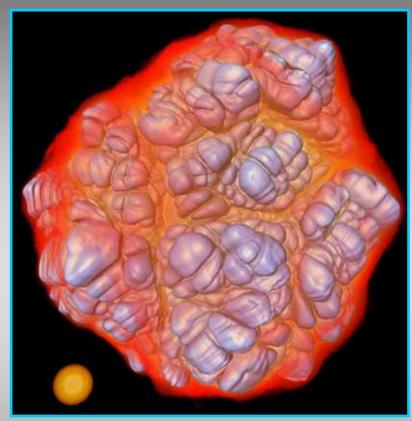
Wang et al. (2006): SN 2004dt (VLT)

- highly aspherical high-velocity burned regions
- globally asymmetric residual fuel

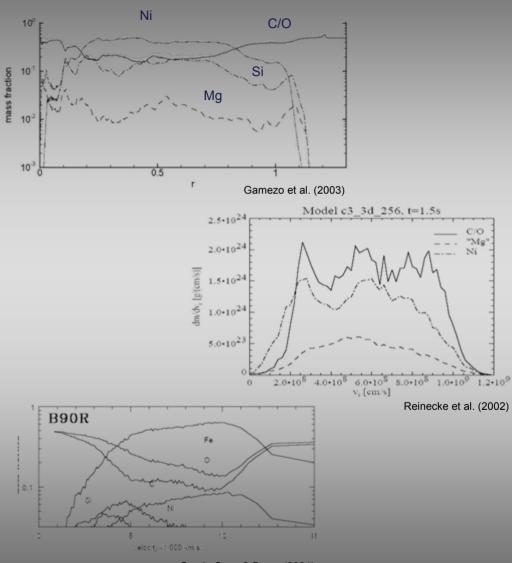
Fesen et al. (2006): SNR 1885 (HST)

- neutronized central region: high-density burn
- free of IMF
- degree of mixing smaller than in deflagrations

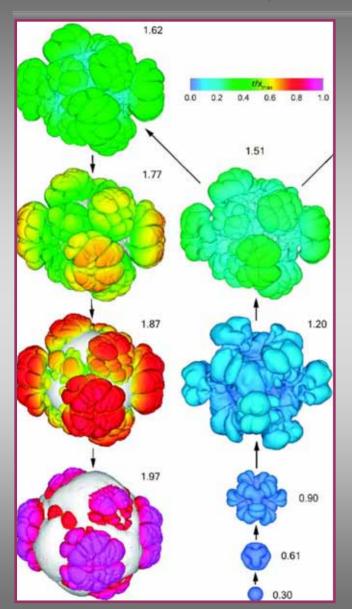
Gerardy et al. (2007): SN 2003hv, SN 2005df (MIR, Spitzer)

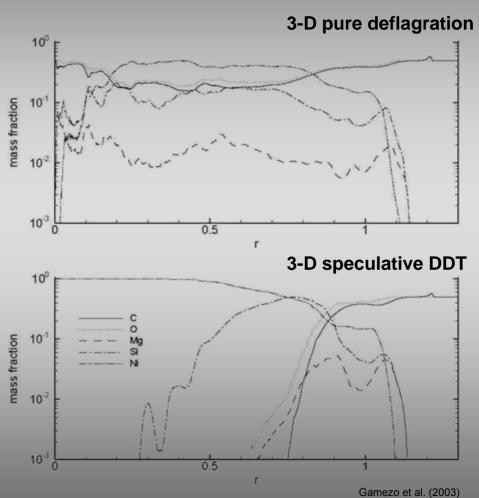

- chemically stratified ejecta
- Ar and Ni shifted in velocity in respect to Co

Motohara et al. (2007): SN 2003hv, SN 2005W (NIR, Subaru)

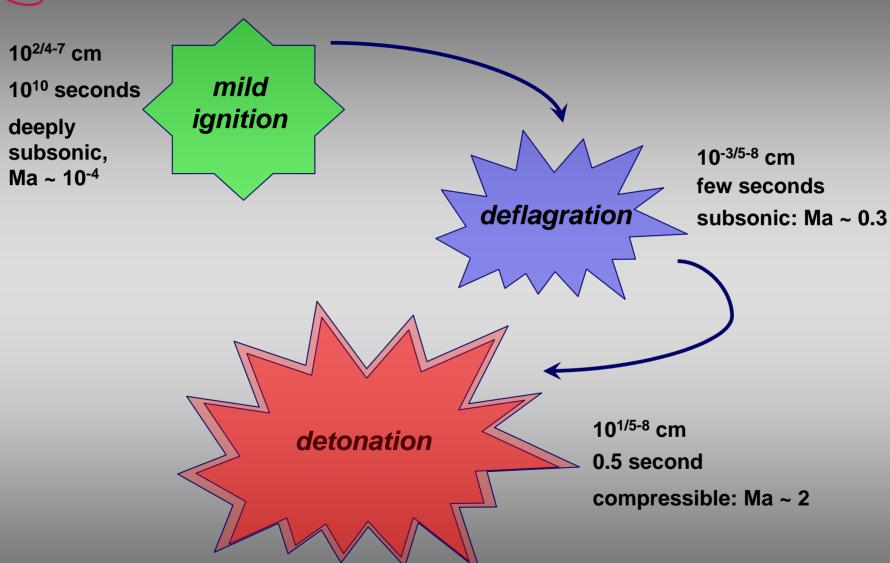

- flat-topped NIR lines: burning at high densities
- line center shift: asymmetric, off-center explosion

Ejecta Composition: Pure Deflagrations


Röpke et al. (2005)



Garcia-Senz & Bravo (2004)


Stratification, Energy: Speculative DDT

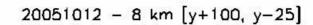
Preferred SN la Scenario

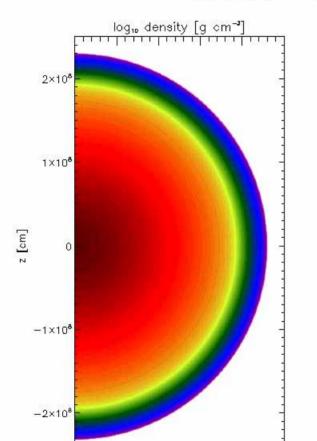
What is DFD

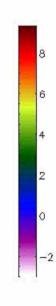
DFD is a delayed detonation model: deflagration followed by a detonation

Detonation is inertially (and not gravitationally) confined (mea culpa!)

Transition density understood in terms of amount of preexpansion

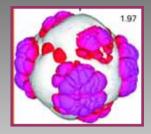

Controlled by physics of both deflagration and detonation (+ transition)



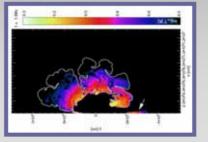


Double-bubble DFD

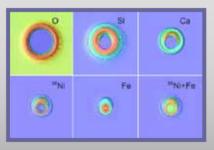
5.0×10⁷ 1.0×10⁶ 1.5×10⁸ 2.0×10⁸ 2.5×10⁸ R [cm]


time = 0.000 ps number of blocks = 1378 AMR levels = 14

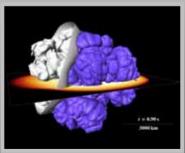
Some DFD-related Work


Gamezo et al. (2004, 2005)

3D DDT models, but deep ignition


Röpke, Woosley, & Hillebrandt (2007)

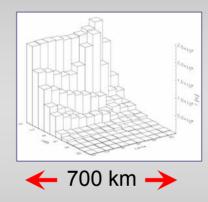
- Parameter study in both 2D and 3D
- Found important correlations
- Partial confirmation of this work


• Fesen et al. (2007) SNR 1885

- 2D off-center DD by-hand model
- Used by Gerardy et al. (2003hv, 2005df)

Röpke & Niemeyer (2007)

3D off-center DD by-hand models



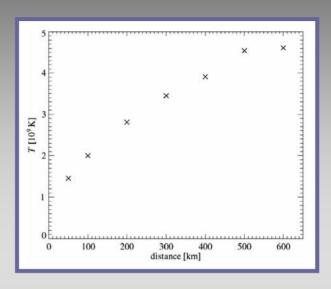
Collision process modeling

Substandard resolution
 order of magnitude lower in 2D, even more in 3D

Model 2D	$\Delta x_{\rm coll}$ [10 ⁶ cm]
2B50d200a 2B50d200b 2B50d200c 2B50d200d	7.87 5.02 5.09 5.02
2B50d200e 2B25d200a 2B25d200b 2B25d200c 2B25d200d 2B25d200e	9.03 6.25 5.62 4.89 2.44

Model	$\Delta x_{\rm coll}$
3D	$[10^7\mathrm{cm}]$
3B25d100	1.26
3P25d100	0.949
3P50d100	2.48
3B25d200	
3T1d200	3.29
3T2d200	

Simplified approach to detonation


no feedback from nuclear burning necessary but not sufficient detonation criterion

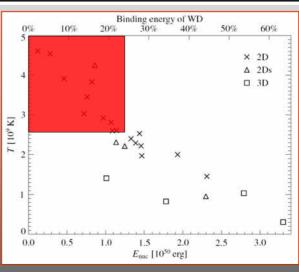
same is true for some preignition models (Kuhlen, Woosley, & Glatzmaier, Zingale & Dursi); Höflich & Stein are exception but have other problems; Townsley et al. model as well?

System on the loose?

Important correlation T_{col}(Z_{bub})

- But 3D 100/200 RWH results inconsistent (and counterintuitive)

Model	T_{max} at coll.	$E_{\rm nuc}$ at coll.	ρ at coll.	$\Delta x_{\rm coll}$
	$[10^9 { m K}]$	$[10^{50}{ m erg}]$	$[{ m g}{ m cm}^{-3}]$	$[10^7 { m cm}]$
3B25d100	1.035	2.79	$< 2 \times 10^{5}$	1.26
3P25d100	1.412	1.01	$< 5 \times 10^5$	0.949
3P50d100	0.828	1.78	$< 5 \times 10^5$	2.48
3B25d200	n	o collision: WI) unbound	
3T1d200	0.308	3.30	$<3.2\times10^3$	3.29
3T2d200	n	o collision: WI	unbound	



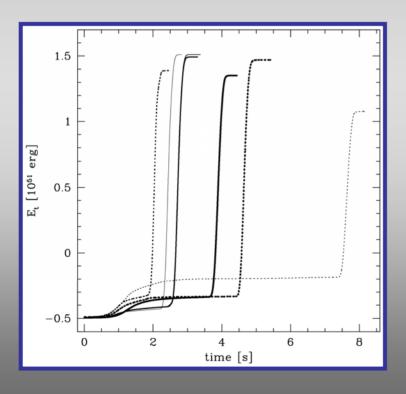
Numerical convergence

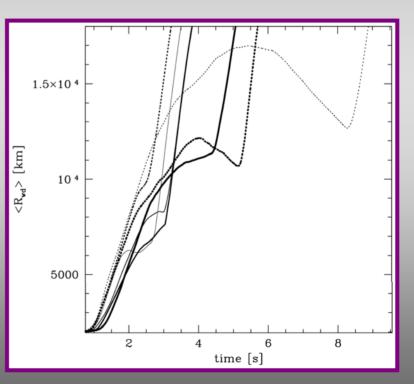
- At higher resolution deflagration is less energetic (+results in higher-res)

Model	bubble radius [km]	resolution	T_{max} at coll. $[10^9 \text{K}]$	E_{nuc} at coll. [10 ⁵⁰ erg]	$T_{\text{max}}(\rho > 3 \times 10^6 \text{g cm}^{-3})$ at coll. [10 ⁹ K]	$T_{\text{max}}(\rho > 1 \times 10^7 \text{g cm}^{-3})$ at coll. [10 ⁹ K]	surface deto- nation (cf. 6.1)?	$\Delta x_{ m ini}$ [10 ⁵ cm]	$\Delta x_{\rm coll}$ [10 ⁶ cm]
2B50d200a	50	128×256	2.61	1.14	1.54		no	4.50	7.87
2B50d200b	50	192×384	2.92	0.97	2.60	14 <u>. (</u> 1	yes	2.97	5.02
2B50d200c	50	256×512	2.22	1.46	1.28	_	no	2.21	5.09
2B50d200d	50	384×768	2.53	1.44	0.959	_	no	1.47	5.02
2B50d200e	50	512×1024	2.29	1.39	0.954		no	1.10	3.82
2B25d200a	25	128×256	2.40	1.33	2.08	(no	4.50	9.03
2B25d200b	25	192×384	1.97	1.47	0.224	1 1 1 1	no	2.97	6.25
$2\mathrm{B}25\mathrm{d}200\mathrm{c}$	25	256×512	2.60	1.09	2.32	1 <u></u>	yes	2.21	5.62
2B25d200d	25	384×768	3.03	0.72	3.03	2.95	yes	1.47	4.89
2B25d200e	25	512×1024	3.83	0.82	3.83	3.80	yes	1.05	2.44

- But this works in favor of hot spot formation!!

Realistic, better resolved models needed.


Realistic, better resolved models needed!


March 22, 2007 Flash Center & KITP 30

DFD Phases

- Deflagration
- Transition to detonation (takes finite amount of time)
- Detonation

Deflagration Modeling: A "Side" Comment

Cabot & Cook (2006): Re number effects on RTI

BG/L model on 30723 grid (Re~104)

The starting length-scale problem

Our results suggest that proper representation of fine-scale initial perturbations is essential for obtaining the correct growth history.

Basic physics problem

[...] it seems prudent to ensure that the model for turbulent flame speed faithfully reproduces RTI physics before invoking other schemes to increase the burning rate, such as multi-point ignition, background turbulence from thermal convection and/or deflagration-to-detonation transition.

DFD Phases: Deflagration

- Weaker compared to Gamezo-like models
- Takes place at large radii rather than close to the core
- Amount of energy released controls expansion
- **Expansion sets the ICs for a detonation**
- Controls the mass and composition of the expelled material
- Controls surface flow energetics (kinematics and orbital motion)

Transition To Detonation

SDT: shock-to-detonation transition

observed in DFD but uncertain, other possibilities available

Zel'dovich's gradient mechanism

self-ignition wave transforms into a detonation when the speed of ignition train approaches sound speed

Oppenheim's detonation bubbles

shock-compressed gas explodes in neighboring exothermic centers producing spherical blast waves – these collide resulting in the onset of detonation kernels that lead to detonation

SWACER: shock wave amplification through coherent energy release

(Lee et al. 1978, Khokhlov, Oran, & Wheeler 1997)

Oppenheim's amplified by the Zel'dovich gradient mechanism

Shock To Detonation Transition

Most are through some form of "microexplosions" - strong vs. mild ignition modes. Presence of induction time gradients associated with temperature and composition gradients seems common.

SDT is a strong, volumetric violent process rather than from exothermic centers (hot spots) in compressed region. As in strong detonation, weak waves are present.

Necessary conditions

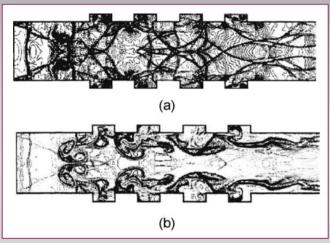
presence of a shock wave

gas energy sufficient to sustain reignition in expanding gas

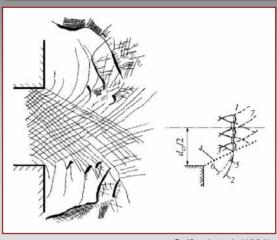
Aspects

compression

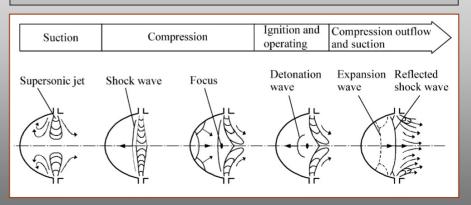
induction time


auto-ignition (energy transfer to support constant shock propagation)

fuel composition

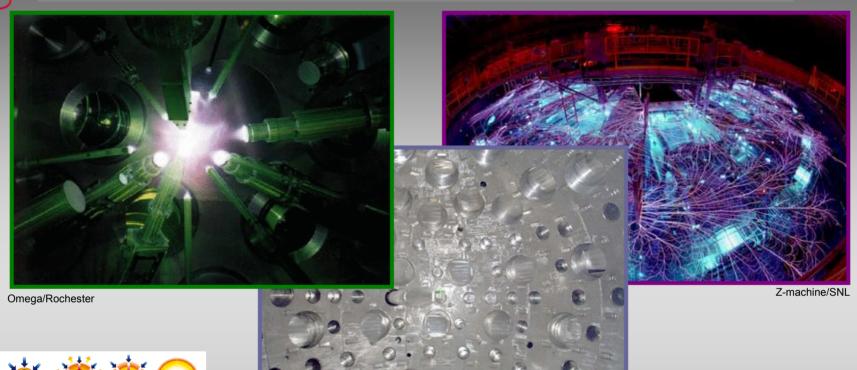

Transition To Detonation Examples

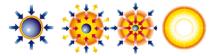
diverging-contracting tube


Yu (2001)

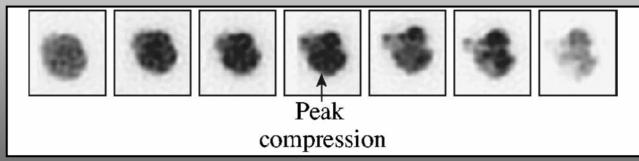
expanding nozzle

Gelfand et al. (1991)


resonator PDE

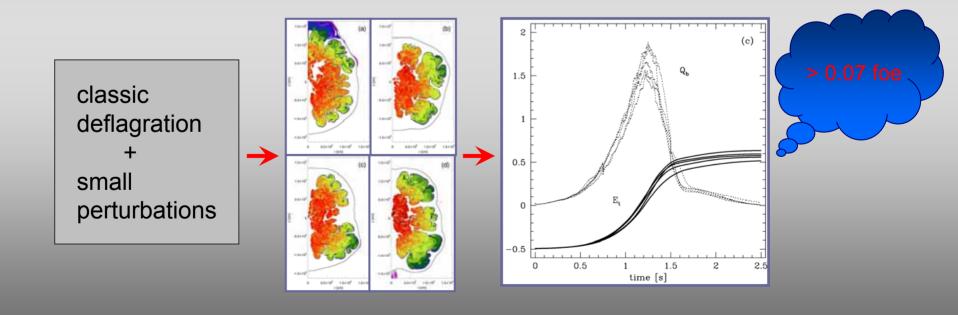


Levin et al. (2001)



DFD/Inertial Confinement Fusion

NIF/LLNL



Smalyuk et al. (2007)

DFD/Perturbations

ICF experiment – different ICs ICF simulation – single ICs Smallyuk et al. (2007) ICF simulation – single ICs Atzeni et al. (2005)

DFD Detonation Phase

Ejecta mildly aspherical

- progenitor perturbed
- finite shock-crossing time on non-static background
- crossing-time short, < 0.5 second

Bulk of nucleosynthesis (alpha network)

- burns at local densities + compression factor
- penetrates both unburned and burned material

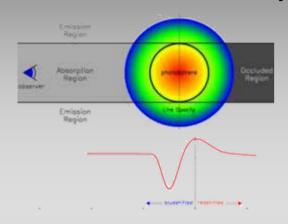
Leaves very little unburned material (< 0.1 M_☉) behind

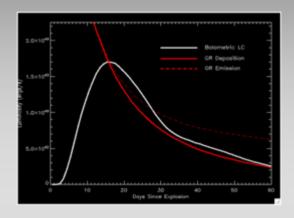
- may leave pockets in outer layers
- the core region fully burnt

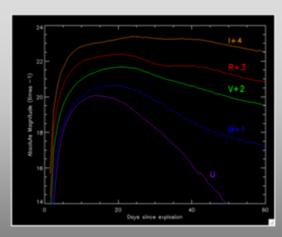
Current model energy/nickel mass estimates are upper limits

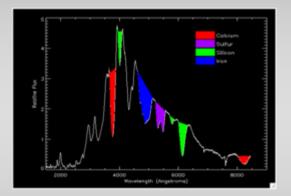
- realistic WD is not pure C/O
- nuclear network is only approximate

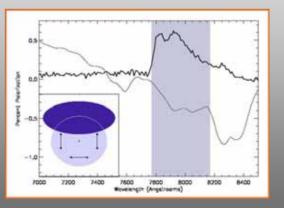
Final Model Properties


- Ejecta mildly aspherical
- Clumpy outside, smooth inner part
- Very little unburned material and only at high velocities
- Current yields approximate, > 0.1-0.3 M_☉ IME, ~1 M_☉ IGE
- $E_{exp} = 1.2 1.3 \times 10^{51} \text{ ergs}$

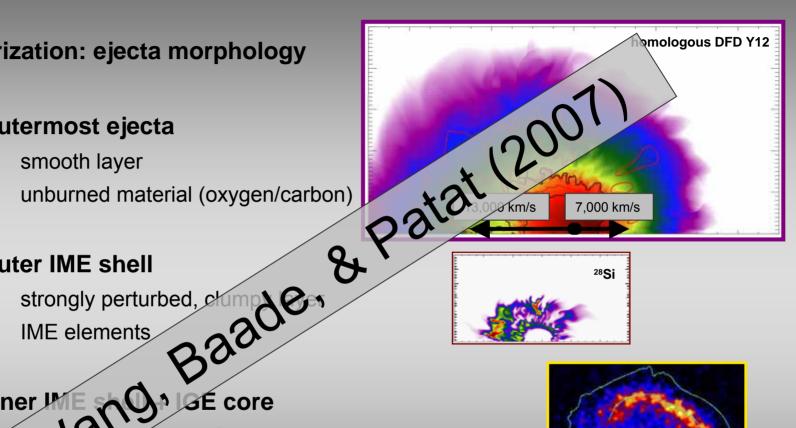

Model	Y12	Y25	Y50	Y100	Y75YM25	Y100YM25	Y75YM50
$\overline{E_t}$	1.357	1.496	1.515	1.516	1.464	1.384	1.075
E _i	1.59×10^{-4}	8.38×10^{-5}	7.15×10^{-5}	7.09×10^{-5}	5.34×10^{-4}	2.87×10^{-5}	1.97×10^{-3}
$-E_{p}$	2.52×10^{-3}	2.39×10^{-3}	2.38×10^{-3}	2.38×10^{-3}	2.31×10^{-3}	2.30×10^{-3}	2.56×10^{-3}
⁴ He	8.03×10^{-3}	1.13×10^{-2}	1.15×10^{-2}	1.10×10^{-2}	1.03×10^{-2}	8.36×10^{-3}	2.25×10^{-3}
¹² C	8.73×10^{-3}	5.49×10^{-3}	3.30×10^{-3}	4.56×10^{-3}	1.29×10^{-2}	2.05×10^{-2}	2.52×10^{-2}
¹⁶ O	0.107	4.65×10^{-2}	4.48×10^{-2}	3.91×10^{-2}	7.54×10^{-2}	9.82×10^{-2}	0.237
²⁰ Ne	4.41×10^{-4}	3.79×10^{-4}	3.28×10^{-4}	4.78×10^{-4}	1.04×10^{-3}	9.53×10^{-4}	9.73×10^{-4}
²⁴ Mg	8.70×10^{-2}	3.40×10^{-2}	3.42×10^{-2}	2.81×10^{-2}	4.51×10^{-2}	6.74×10^{-2}	0.194
²⁸ Si	0.127	7.28×10^{-2}	6.07×10^{-2}	5.74×10^{-2}	8.00×10^{-2}	0.137	0.202
³² S	7.03×10^{-2}	3.65×10^{-2}	3.06×10^{-2}	3.18×10^{-2}	4.21×10^{-2}	8.75×10^{-2}	0.124
³⁶ Ar	1.64×10^{-2}	8.26×10^{-3}	6.91×10^{-3}	7.36×10^{-3}	3.97×10^{-3}	2.07×10^{-2}	2.95×10^{-2}
⁴⁰ Ca	1.82×10^{-2}	8.95×10^{-3}	7.53×10^{-3}	8.09×10^{-3}	1.02×10^{-2}	2.20×10^{-2}	3.24×10^{-2}
⁴⁴ Ti	1.41×10^{-5}	9.35×10^{-6}	3.02×10^{-5}	1.35×10^{-5}	2.71×10^{-5}	2.71×10^{-5}	2.58×10^{-5}
⁴⁸ Cr	2.96×10^{-4}	1.49×10^{-4}	1.42×10^{-4}	1.42×10^{-4}	1.78×10^{-4}	3.43×10^{-4}	4.83×10^{-4}
⁵² Fe	6.50×10^{-3}	3.43×10^{-3}	3.01×10^{-3}	2.91×10^{-3}	3.49×10^{-3}	6.85×10^{-3}	1.03×10^{-2}
⁵⁶ Ni	0.926	1.147	1.173	1.186	1.075	0.895	0.510

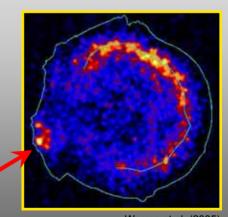



Model Validation – Radiative Transfer


Kasen, Thomas, & Nugent (2006): Multi-dimensional time-dependent Monte Carlo radiative transfer

Y12 DFD Model Validation: Polarization


Polarization: ejecta morphology

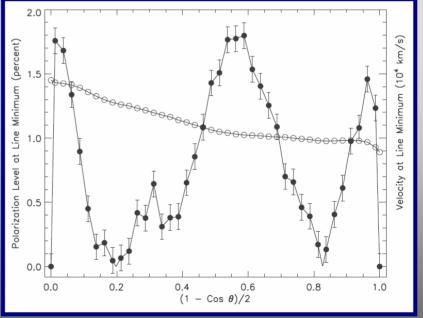

- **Outermost ejecta**
- **Outer IME shell**
- Inner #

ion, stratified

At elements (silicon shell over nickel core)

an possibly be probed with xray/SNRs

Warren et al. (2005)

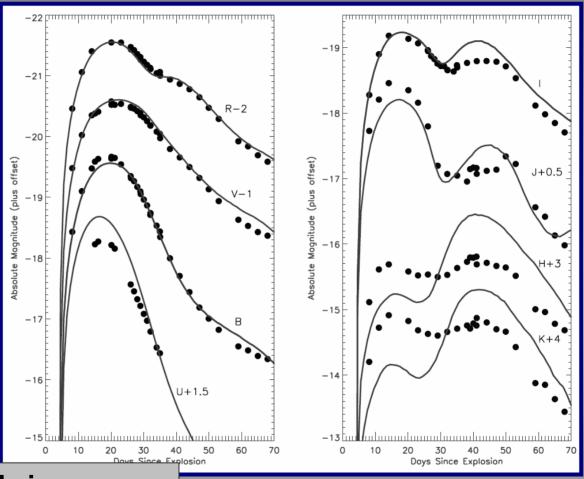

Y12 DFD Model Validation: Polarization

Polarization: ejecta morphology

Outer IME shell

- strongly perturbed, clumpy layer
- **IME** elements

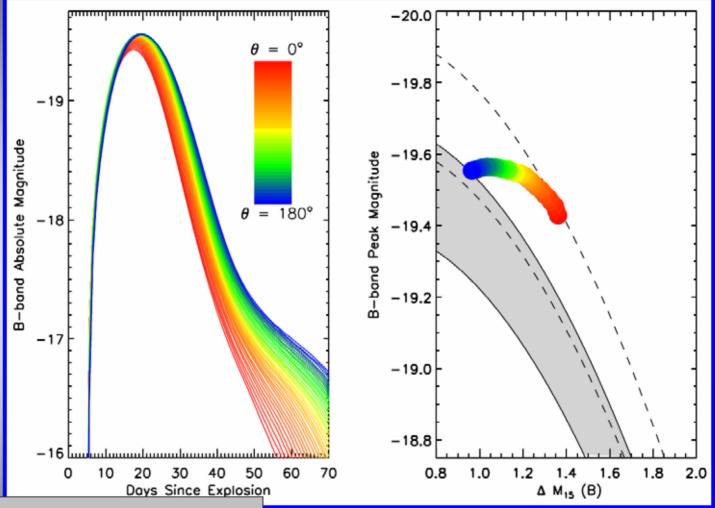
outer IME shell 28**S**i inner IME shell



Kasen & Plewa (2007)

IME asphericity controlled by the deflagration phase in the DFD model

Y12 DFD Model Validation: LC/SN 2001el


Equatorial view

Reasonable quality, comparable or better than W7

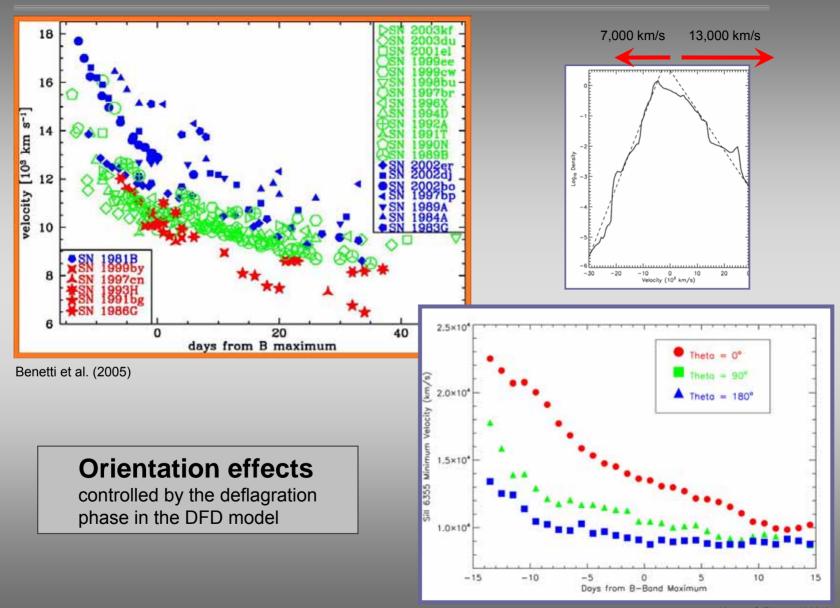
Kasen & Plewa (2007), Krisciunas et al. (2003)

DFD/Phillips Relation


Orientation effects

controlled by the deflagration phase in the DFD model

Kasen & Plewa (2007)



DFD Model Validation: Spectroscopy

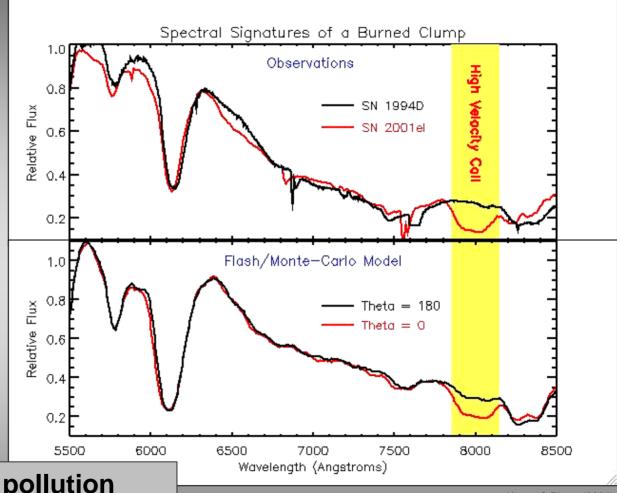
DFD Model Validation: Velocity Evolution

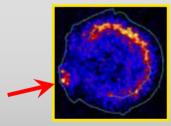
Kasen & Plewa (2007)

DFD Model Validation: HVF

Spectroscopy: high-velocity features

Growing body of evidence


SN 1990N SN 1991T SN 1992A SN 1994D SN 1999ee SN 2000cx SN 2001el SN 2002bo SN 2002er SN 2003du SN 2005cf 2005cg (Mazzali et al. 2005, Garavini et al. 2007)


Theory

- impossible to obtain in detonations
- highly unlikely in pure deflagrations
- equally hard in DD (Yamaoka et al. 1992)
- CSM interaction (Gerardy et al. 2004, Quimby et al. 2006)
- combination of factors (Tanaka et al. 2006)
- DFD feature (Kasen & Plewa 2005)

DFD Model Validation: IME

Warren et al. (2005)

Surface pollution

controlled by the deflagration phase in the DFD model

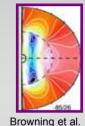
Kasen & Plewa (2005)

Some Intriguing Observations

- HVF require IME-enhanced material detached from bulk ejecta
 - Hard to imagine in deflagrations
 - Perhaps possible in DD given transition below 10⁷ g cm⁻³ (wavy IME production)
- Polarimetry indicates the outer layers are clumpy but the IGE core is smooth
 - Pure deflagrations are likely to produce turbulent cores
 - DD as well if detonation cannot penetrate through ashes
 - And even if it can, how to retain clumpy structure at high velocities?
- MIR observations are indicative of high-density burning products in the central region of ejecta
 - How pure is it?
 - Do we model deflagration correctly?
 - Is it another indication of off-center late detonation?
 - Or perhaps progenitors we use are not realistic?

Progressive Core Growth Ignition

Consider a C/O Chandrasekhar mass WD



Höflich & Stein

- Convective rotating core ⇒ temperature fluctuations ⇒ sparks

Kuhlen et al.

Bubbles are known to be unstable, gravity is low, buoyancy inefficient, but turbulence strong ⇒ breakup, quenching

Core heating ⇒ progenitor (pre)expansion ⇒ lower central density moderates burning

Zingale et al.

 Convective core consumes fuel ⇒ becomes rich in stable IGEs, grows in size ⇒ spark production moves to larger radii

 Greater buoyancy, role of turbulence decreases ⇒ sparks more stable

Once stable enough ⇒ successful overshoot ⇒ ignition

What Does It Give Us?

Partially pre-expanded progenitor

Stable IGE in the core

IGE composition possibly from variable density/slow expansion

Global asymmetry due to rotation

Need a low-Mach flow solver: poster by Ju Zhang

Y12 Detonating Failed Deflagration Model

- subject to detailed validation process matches key characteristics of observed objects room for improvement identified
 - too luminous, crude nucleosynthesis, polarized low velocity lines, inadequate RT

emphasized importance of the initial conditions detonation in inertially confined flow natural chain of events – no user intervention for now the only not "by hand" DD model

CP1: The initial conditions CP2: The detonation fuse

To be continued!

