


INTRODUCTION AND OUTLINE

e Focus of Talk: What can we learn from the observed AM CVn population
* about the binary evolution processes that set the initial parameters of potential AM CVn systems?

e about the physics that set the outcome of starting mass transfer as a function of these initial
parameters?

e Qutline:

* The AM CVn Binaries:
e Basic Properties.
e Formation channels.
* Answering the above questions:
e Diagnostics developed from theory.
e The developing observational picture.

e (Conclusions and a look forward.
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Diacnostics I1: H, He, C, N, AND O ABUNDANCE PATTERNS

e (V channel below Py, =30 minutes (Podsiadlowski et al. 2003):
* Inwardly evolving systems have H mass fraction, A=0.01-0.22.

e Qutwardly evolving systems, A=(.0-0.04.

e Typical X'values decrease with decreasing minimum Zoy,.
e He-star channel:
No H post-£or», minimum.

Expect variations in He to C/O ratios depending on extent of He burning before contact (Nelemans

etal. 2001, Savonije etal. 1986, Tutukov & Fedoroval 989).

About 50% of systems in this channel make contactin <10% of He-burning lifetime; 80% in <40%
of He-burning lifetime (Nelemans et al. 2001).

e Ratio of N to C/O should be down from expectations for CNO-process ashes.
e WD channel:

* No H post-F’r», minimum.

* He burning never gets underway, so CNO-process ashes: He dominated, N overabundant compared

to Cand O.
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OBSERVATIONAL DATA I1I: ComposiTioN AND NUMBER DENsITY OF AM CVNs

e Abundance Patterns:

* No convincing indication of H in any AM CVn spectrum. E. g.,
e Disk spectra modeling of AM CVn, HP Lib, CR Boo, and V803 Cen (Nasser et al. 2003).

e No H features in observed optical spectra of “SN 2003 aw, SDSS J1240-01, or GP Com (Roelofs et al.
2005, 2006, Morales-Rueda et al. 2003).

e (CNO abundances: either N features the only seen or N is dominant CNO element:

e Only N features seen SDSS J1240-01 and GP Com (Roelofs et al. 2006, Morales-Rueda et al. 2003).

e XMM Newton observations of CR Boo, HP Lib, AM CVn, GP Com, Ce-315, and SDSS J1240-01 all
show N elevated to levels expected for CNO-processed ashes (or even higher) (Ramsey etal. 2005, 2006);

e Space density of AM CVn systems:

 Observational estimates consistently of order 10-°-10- pc3 (Warner 1995, de Groot 2001, Roelofs et
al. 2007a, 2007b).

e Most pessimistic theoretical model predicts 104 pe (Nelemans et al. 2001).




Purting 1T ALL TOGETHER

e (CV Channel:

* Lack of H in any system is a big strike against this being a significant contributor to AM CVn
population.

e (an we provide a firm explanation for why this channel appears not to contribute?

e He-star channel:
* Possibly required by high mass transfer rates in several systems.

* Ifthis channel does contribute, is there a reasonable explanation for no He-burning products in any
system?

Donor’s progenitor lacks sharp core/envelope entropy contrast leading to merger in second CE-
event (e.g., Taam & Ricker 2006).

e WD channel:
e SDSS J0926+3624 provides definitive evidence that this channel contributes to AM CVn

population.

* No evidence for the cold donors that should dominate this channel’s contribution (Deloye et al.

2005).

* Allsystem’s abundances appear consistent with that expected from all systems in this channel (He-
dominated, N-rich, and H-free).




PosSIBLE SYNTHESIS (I.E, ALMOST RAMPANT SPECULATIONS)

e He-star channel systems all merge in CE.
e WD channel systems are the only contributors to AM CVn population:
* Observed abundances naturally explained.

e Maximum entropy in this channel set by donor’s pre-contact cooling rate, which current modeling is
likely overestimating.

=Could provide explanation for highest mass-transfer rate systems.

Only need 10% of WD channel systems to survive contact to explain observationally inferred number
density of AM CVn population:

e Directimpact accretion leads to unstable mass-transfer at contact in this channel (Marsh et al. 2004).

e Hotter donors and more massive accretors tend to stabilize mass-transfer, so such systems preferentially
survive to become AM CVns (but see also Gokhale et al. 2006).

Prediction: observed systems should all have far from zero-entropy donors and higher than expected total
system mass.

Details need to be worked out to see if this is viable explanation.
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