The Supernova Legacy Survey

Mark Sullivan
University of Toronto

http://legacy.astro.utoronto.ca/
http://cfht.hawaii.edu/SNLS/
French Group
Reynald Pain, Pierre Astier, Julien Guy, Nicolas Regnault, Jim Rich, Stephane Basa, Dominique Fouchez

UK
Gemini PI: Isobel Hook
Richard McMahon

USA
LBL: Saul Perlmutter
CIT: Don Neill

Victoria Group
Chris Pritchet, Dave Balam

Toronto Group
Ray Carlberg, Mark Sullivan, Andy Howell, Kathy Perrett, Alex Conley

Full list of students and associates at: http://cfht.hawaii.edu/SNLS/
CFHT Legacy Survey (2003-2008)

- 5 year survey, goal: 500 distant SNe Ia to measure “w”
- Uses CFHT/“Megacam”
- 36 CCDs, good blue response
- 4 filters for good k-corrections and color measurement

Megapprime
CFHT-LS Organisation

CFHT-LS (imaging) – 2003-2008

<table>
<thead>
<tr>
<th>DEEP</th>
<th>WIDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galaxy studies</td>
<td>Cosmic shear</td>
</tr>
<tr>
<td></td>
<td>Clusters</td>
</tr>
<tr>
<td>Time sequenced dataset (202n over 5 years)</td>
<td></td>
</tr>
</tbody>
</table>

SNLS collaboration

- Data-processing
- Major Spectroscopic Program
 - Gemini (Canada/UK/USA)
 - 120 hrs/yr (60:40:20)
 - VLT (France/Other Euros)
 - 120 hrs/yr
 - Keck (through LBL)
 - 40 hrs/yr
- Cosmological analyses

Magellan near-IR study (Freedman et al.)
- Rest-frame I-band Hubble diagram

Keck SN Ia UV study (Ellis/Sullivan et al.)
- LRIS high-S/N - metallicity through UV lines
- Testing accuracy of k-corrections in the UV

SN IIP study (Nugent/Sullivan/Ellis et al.)
- Using SNe IIP as standard candles
- Independent Hubble diagram to z=0.5
\[\Omega_M = 0.263 \pm 0.042 \text{ (stat)} \pm 0.032 \text{ (sys)} \]

\[<w> = -1.02 \pm 0.09 \text{ (stat)} \pm 0.054 \text{ (sys)} \]

Astier et al. 2006
Third year" SNLS
Hubble Diagram
(preliminary)

Best-fit for SNLS+flatness

$\Omega_{M} = 0.26^{+0.03}_{-0.03}$

$\Omega_{M}=0.3, \Omega_{\Lambda}=0$

$\Omega_{M}=1.0, \Omega_{\Lambda}=0$

Sullivan et al. 2007
Cosmological Constraints (Preliminary)

SNLS + BAO (No flatness)

SNLS + BAO + simple WMAP + Flat

7% measure of w
SNLS Vital Statistics

Duration/Area/Number of SNe Ia
- 5 Years (2003-2008), ~500 confirmed, ~1000 all z photo-typed
- 4 sq degrees; 10 “sq. deg. years”

Redshift and Filter coverage
- 0.08<z<1.06 (0.2<z<0.9): 50% @ z=0.85
- g’r’i’z’: 4 filters are essential over 0.2<z<1.0
Redshift distribution

- Survey running for 3.5 years
- >2000 likely SN detections
- ~310 confirmed distant SNe Ia (+ 40-50 not yet processed)
 - 500 spectroscopically confirmed SNe Ia by survey end
SNLS Vital Statistics

Duration/Area/Number of SNe Ia
- 5 Years (2003-2008), ~ 500 confirmed, ~ 1000 all z photo-typed
- 4 sq degrees; 10 “sq. deg. years”

Redshift and Filter coverage
- $0.08 < z < 1.06$ (0.2 < z < 0.9): 50% @ z = 0.85
- g’r’i’z’: 4 filters are essential over 0.2 < z < 1.0

Cadence
- Queue Scheduled: 3-4 days during 14-18 days/month (5 epochs/month)
- “Cadence within a night”: 15 images over two hours
Cadence: “Rolling” light-curves
SNLS Vital Statistics

Duration/Area/Number of SNe Ia
- 5 Years (2003-2008), ~ 500 confirmed, ~ 1000 all z photo-typed
- 4 sq degree fields; 6 months/yr/field; 10 “sq. deg. years”

Redshift and Filter coverage
- $0.08 < z < 1.06$ (0.2$< z < 0.9$): 50% @ $z = 0.85$ (2.6$x10^3$ Gpc3 per field)
- g’r’i’z’: 4 filters are essential over $0.2 < z < 1.0$

Cadence
- Queue Scheduled: 3-4 days during 14-18 days/month (5 epochs/month)
- “Cadence within a night”: 15 images over two hours

Seeing
- Median 0.65” in i’; regularly 0.6” or better
Seeing – detection filter (i’)

![Graph showing seeing distribution for detection filter (i')]
Seeing

- g': 0.79
- r': 0.71
- i': 0.66
- z': 0.65
Seeing versus S/N

PSF photometry of $i=20-22$ stars

S/N strongly depends on seeing (almost a linear relation)

Seeing also affects quality of PSF-matching

If seeing degrades by 50%, exposure times must be doubled to reach the same S/N

CFHT spent considerable resources on optimising megacam image quality
SNLS Vital Statistics

Duration/Area/Number of SNe Ia
- 5 Years (2003-2008), ~ 500 confirmed, ~ 1000 all z photo-typed
- 4 sq degrees; 10 “sq. deg. years”

Redshift and Filter coverage
- 0.08<z<1.06 (0.2<z<0.9): 50% @ z=0.85
- g’r’i’z’: 4 filters are essential over 0.2<z<1.0

Cadence
- Queue Scheduled: 3-4 days during 14-18 days/month (5 epochs/month)
- “Cadence within a night”: 15 images over two hours

Seeing
- Median 0.65” in i’; regularly 0.6” or better

Depth for SNe (AB):
- Can’t take 5-σ point source limiting mag and claim this as the depth
- Detection depth (RTA) SNe Ia: 50% @ i=24.3 (peak) ~ z=1.05
 (Spectroscopic depth: i=24.0, 30% increase over host)
- Core collapse SNe: z=0.4-0.5
- (Point source depth: 5-σ ➔ i=25.0)
Perrett et al. 2007

Simulations based on realistic SN populations (including A+B) and RTA software

Redshift

Magnitude
SNLS Vital Statistics

Duration/Area/Number of SNe Ia
- 5 Years (2003-2008), ~ 500 confirmed, ~ 1000 all z photo-typed
- 4 sq degrees; 10 “sq. deg. years”

Redshift and Filter coverage
- 0.08<z<1.06 (0.2<z<0.9): 50% @ z=0.85
- g’r’i’z’: 4 filters are essential over 0.2<z<1.0

Cadence
- Queue Scheduled: 3-4 days during 14-18 days/month (5 epochs/month)
- “Cadence within a night”: 15 images over two hours

Seeing
- Median 0.65” in i’; regularly 0.6” or better

Depth for SNe (AB):
- Can’t take 5-σ point source limiting mag and claim this as the depth
- Detection depth (RTA) SNe Ia: 50% @ i=24.3 (peak) ~ z=1.05
 (Spectroscopic depth: i=24.0, 30% increase over host)
- Core collapse SNe: z=0.4-0.5
- (Point source depth: 5-σ ➔ i=25.0)