Odor-guided navigation in terrestrial animals

Venkatesh N. Murthy

Center for Brain Science
and
Department of Molecular & Cellular Biology

Navigation vs. Foraging

The famous case of desert ants (Cataglyphis)

Behav. Ecol. Sociobiol. 62, 415-425.

R. Wehner, S. Wehner. 1990. **Insect navigation: use of maps or Ariadne's thread.** Ethol. Ecol. Evol., 2: 27-48

Even Cataglyphis use olfaction (+wind) to make food approach

The Journal of Experimental Biology 203, 857–868 (2000)

Navigation

Landmark-based:

- (i) Beaconing
- (ii) Route following
- (iii) Path integration

Map-based:

- (i) find your current location (with an internal representation?)
- (ii) use a "compass" to find direction for travel

Brains and navigation

Foraging

Using sensory cues:

1. Vision and audition:

landmarks are localized by geometric considerations

2. Olfaction:

a bit more tricky

Foraging with chemical senses

At short distances (define!), diffusion dominates

doi: 10.3389/fncel.2010.00006

Larger distances

At larger distances, chemical gradients fluctuate

Continuous vs. intermittent detection

Local gradients may not be helpful

Highly intermittent odor encounters

Scalar turbulence

Boris I. Shraiman* & Eric D. Siggia†

NATURE VOL 405 8 JUNE 2000

PHYSICAL REVIEW X **4,** 041015 (2014)

Odor Landscapes in Turbulent Environments

Antonio Celani,^{1,2} Emmanuel Villermaux,³ and Massimo Vergassola^{1,4}

Environmental Fluid Mechanics 2: 115–142, 2002.

Strategies for tracking odors highly dependent on spatial scale

Gradient descent (ascent)

Odor-guided anemotaxis

Infotaxis

...

Three examples from my group

Navigating using air-borne odors (mice)

Tracking ground trails (mice)

Pheromone tracking (ants)

Acknowledgment

Ryan Draft **Alexander Mathis**

Support

DFG, HFSP

NARSAD

NIH, NSF

Collaborators

Florin Albeanu, Matthias Bethge
Catherine Dulac, David Gire
Alexei Koulakov, Jeff Macklis
Mackenzie Mathis, Agnese Seminara
Massimo Vergassola

Three examples from my group

Navigating using air-borne odors (mice)

Tracking ground trails (mice)

Pheromone tracking (ants)

Locating source through airborne odor cues

Mice can navigate to odor source

Average odor concentrations in the arena

Computational fluid dynamics simulations

Gradient-based search

$$X_{t+1} = X_t + \alpha \frac{\nabla c}{|\nabla c|}$$

Three examples from my group

Navigating using air-borne odors (mice)

Tracking ground trails (mice)

Pheromone tracking (ants)

Sampling the chemical world on surfaces

Mice on a paper treadmill with continuously printed odor trail

Videography of mice tracking trails

Automatic posture/part detection

nature neuroscience TECHNICAL REPORT

DeepLabCut: markerless pose estimation of user-defined body parts with deep learning

Alexander Mathis^{1,2}, Pranav Mamidanna¹, Kevin M. Cury³, Taiga Abe³, Venkatesh N. Murthy², Mackenzie Weygandt Mathis^{1,4,8}* and Matthias Bethge^{1,5,6,7,8}

Following mice as they track odor trails

Dissecting behavior

Getting at algorithms for tracking

Three examples from my group

Navigating using air-borne odors (mice)

Tracking ground trails (mice)

Pheromone tracking (ants)

Ants track pheromone trails

Camponotus Pennsylvanicus, the black carpenter ant

http://www.antwiki.org/wiki/Camponotus_pennsylvanicus

Ant antennae

Getting ants to track (visualized) pheromone trails

IR light
Minimal air currents
White paper background
6" trail (hindgut extract), hand-drawn
11" x 8" field of view
30 fps, 1280x960, 0.22 mm/px

Looking more closely and slowly...

Active sampling with the antennae

Antennal dynamics vary with behavioral "modules"

Asymmetric (alternating) contact with trail

Scent trail tracking with single antenna

What's the big deal about tracking scent trails?

Deciding where to go based on current + past knowledge

Given:
$$L = [x_L y_L c_L]$$

$$R = [x_R y_R c_R]$$

A simple (linear) predictive model for turning

Following ants in a large arena

Using tricky trails to get at the strategies & algorithms

Three examples from my group

Navigating using air-borne odors (mice)

Tracking ground trails (mice)

Pheromone tracking (ants)

End