

Sensory systems evolved and operate in the context of ecosystems

Sensory feedbacks -> interactions with other individuals Individual and collective computation are simultaneous

Decision-making in ecological systems

Navigation, attack, and evasion: robust behavioral control

Decision-making in the wild: taking the lab into the sea

Mike Gil (Postdoc, UCSC) Colin Twomey (U Penn)

Role of sensory information?

Could generate observed "bursty" behavior

Formulate as self-exciting birth-death model

Likelihood-based method for comparing models

Fish respond to both predators and other fish

Two important effects of neighbor density:

spontaneous

social excitation

$$\mathrm{rate} = \lambda(t) + \theta(t) + \psi(t)$$

predator forcing

Lower spontaneous exit rate when more neighbors present

$$\lambda(t) = \lambda_0 N(t)^{-\eta}$$

Less responsive to exits when more neighbors present

$$\psi(t) = \psi_0 N(t)^{-\gamma} \sum_{t_i < t} e^{-\alpha(t - t_i)}$$

simulation experiment

Lowered responsiveness prevents hypersensitivity

Hypersensitivity/Hyposensitivity in collective systems

INTERFACE

Social information use and the evolution of unresponsiveness in collective systems

rsif.royalsocietypublishing.org

Anim. Behav., 1995, 50, 1097-1108

Collective detection of predatory attack by social foragers: fraught with ambiguity?

Potential disadvantages of using socially acquired information

Luc-Alain Giraldeau^{1*}, Thomas J. Valone² and Jennifer J. Templeton³

RESEARCH ARTICLE

The evolution of distributed sensing and collective computation in animal populations

Andrew M Hein^{1*†}, Sara Brin Rosenthal^{2,3†}, George I Hagstrom^{1†}, Andrew Berdahl⁴, Colin J Torney⁵, Iain D Couzin^{3,6*}

What is the neural basis of these phenomena?

looming visual stimulus

threat detection

triggers escape response

The nature of information flow

Data about threat transmitted through visual cues

What is the processing algorithm (decision rule) that transforms data into action?

Need to know exactly what fish saw

Sensory reconstruction

A decision-making circuit for threat response

Mechanism for response rescaling from previous experiment

A decision-making circuit for threat detection

Correctly classifies 82-97% of responses out of sample

$$D(t) = \kappa_1 S' \exp(-\kappa_2 S - \kappa_3 N)$$

Same rule applies to 12 species in 9 families

We weren't the first to find this decision rule

$$D(t) = k_1 S' \exp(-k_2 S)$$

Conserved algorithm translates data into escape responses

Hatsopolous et al. 1995, Fotowat & Gabbiani 2011, Peek & Card 2016

A nod to Navigation

Dunn et al. 2016 Neuron

Transition in trajectory control

Dynamic gain control

$$\frac{d\theta}{dt} = k_0(t)\phi_{shelt}(t) - k_1(t)\phi_{stim}(t)$$

Decision-making in an ecological system

- Individual and collective computations simultaneous
- Multi-objective navigation
- Response rescaling, gain control
- Specific neural circuits implicated (M-cell)

Bacterial navigation in dynamic seascapes

Simon Levin Roman Stocker Francesco Carrara Doug Brumley

Fish navigation through rivers and estuaries

Natnael Hamda Vamsi Sridharan

Fish navigation through rivers and estuaries: behavioral repertoire mapping

Natnael Hamda Vamsi Sridharan

Berman et al. 2014, 2016

Behavioral control during attack and evasion in turbulence

Jimmy Liao Ben Martin Steve Munch

Untangling the bank

behavior, decision-making, information processing

Algorithms

