Vacancies-Excitons
Mechanism of Supersolidity
(in helium?)

Michael Ma
University of Cincinnati

Collaborators:
Fuchun Zhang
Dai Xi: HKU

The Supersolid State of Matter
KITP, 2006

Intriguing possibility for quantum crystal:

- $\rho(r) = \rho_0 \cos(G \cdot r)$
- *but* atoms mobile
- mobile atoms (bosons) can Bose condense
- exhibit superfluidity
- SUPERSOLID

- NCRI observed in solid He4 by 3 groups
- Bulk, equilibrium property?
Vacancy mechanism of supersolid

- Andreev and Lifshitz - quantum fluctuations favor finite density of vacancies even at $T=0$. Vacancies are mobile and can Bose condense.

- Chester - Jastrow wavefunctions generally have ODLRO, including ones describing solid order. Speculate due to vacancy condensation.

- Presence of vacancies in supersolids necessary provided there is no vacancy-interstitial symmetry, shown by Prokofev and Svistunov recently.
data fit to $c(T) \sim \exp\left(-\frac{f}{kT}\right)$

$E_v \sim 10$ K
- Supersolid He4 not observed until Kim and Chan’s expt.

- Previous expts and theoretical calculations place strict limit on vacancy density in normal solid.

- High activation energies for defects:
 \[E_v \sim 10 - 15 \text{ K} \quad E_i \sim 50 \text{ K} \]

Quandary:
How can defects of such high activation energies condense at low temperature, \(T_c \sim 0.2 \text{ K} \)?

We provide one resolution to this quandary. New mechanism for vacancy condensation.
Proposed Resolution

- **First order transition**
 At $T=0$, $n_v = 0$ in normal solid
 finite in supersolid

- **“Vacuum” switching**
 vacancies condense in background of another type
 of defectons called “excitons”

- **Normal-Supersolid transition accompanied by**
 Commensurate-incommensurate transition
 Change in local density profile
Andreev-Lifshitz Vacancy Model

Defect free solid - Mott insulator
Andreev-Lifshitz Vacancy Model
If $E_v < 0$, spontaneous creation of vacancies at $T = 0$
Such vacancies will Bose condense

$E_v = \varepsilon_a - zt_a$

$E_v < 0$ not supported by expts or theories
Interstitial condensation even more unfavorable.

\[E_b = \epsilon_b - z t_b \]

\[t_b > t_a \text{, but } \epsilon_b >> \epsilon_a \text{, so } E_b > E_a \]

Interstitial condensation even more unfavorable.
Have Your Cake and Eat it Too

Model

Third type of defect: bound vacancy-interstitial or “exciton”

\[\Delta \epsilon_a > \epsilon_b \]

\[\epsilon_b >> \epsilon_a > \Delta \]
Key physics:
Vacancies can Bose condense easier over exciton background than over defect free background

- activation energy $\epsilon_a - \Delta < \epsilon_a$
- vacancy hops with t_b, not t_a

Instability criteria $\epsilon_a - \Delta - z t_b$

If condensation amplitude sufficiently large, condensation energy $> \Delta$
vacancies Bose condense
stable normal solid
defect free
\[n_{\text{ex}} = n_{\text{v}} = 0 \]

unstable normal solid
defect rich
\[n_{\text{ex}} \neq 0, n_{\text{v}} = 0 \]

stable supersolid
defect rich
\[n_{\text{ex}} \neq 0, n_{\text{v}} \neq 0 \]

- \(T = 0 \) transition first order
- normal - supersolid transition
 \textit{commensurate - incommensurate transition}
 \textit{change in local density profile}
Change in Local Density Profile

Normal Solid

Supersolid
Microscopic Wavefunction

Normal solid \(\psi = \prod_{i=1}^{N} b_i^+ |\text{vacuum}\rangle \)

\(b_i^+ \) creates a He atom in localized state \(\phi_i = \phi(r-R_i) \)

commensurate
\(\phi \) has single peak

Supersolid \(\psi_{ss} = \prod_{i=1}^{N_0} (u + va_i^+) |\text{vacuum}\rangle \)

\(a_i^+ \) creates a He atom in localized state \(\chi_i = \chi(r-R_i) \)

\(|u^2| = \text{vacancy fraction} \)

\(N < N_0 \), incommensurate
\(\chi \) less localized than \(\phi \), perhaps even multiippeak

\(\text{SS} = (u + v a_i^+) \prod_{i=1}^{N_0} |\text{vacuum}\rangle \)
Equivalence between Jastrow and Nosanow-Jastrow wavefunctions with vacancies

\[\psi_{SS} = \prod_{i=1}^{N_0} (u + v a_i^+) |\text{vacuum}\rangle \]

\[\approx P_G \left(\sum_{i=1}^{N_0} \frac{v}{u} a_i^+ \right)^N |\text{vacuum}\rangle \]

\[\sim P_G \left(\int dr \sum_{i=1}^{N_0} \chi(r - R_i) \psi^+(r) \right)^N |\text{vacuum}\rangle \]

\[= P_G \prod_{\alpha} \left(\sum_{i=1}^{N_0} \chi(r_\alpha - R_i) \right) \]
Single-Site Mean Field Theory

- Decouple K.E.
 \[t a^+ a \rightarrow t \langle a^+ a \rangle + t a^+ \langle a \rangle - t \langle a^+ \rangle \langle a \rangle \]
 \(\langle a \rangle \) solved self-consistently to give Bose condensed amplitude

- \(E = E_{MF} + \) elastic energy for change in lattice constant

- Respect strong on-site correlations (hard core)

- Successful for other lattice boson models for \(d \geq 2 \) at \(T=0 \)

- Gives exact instability criteria for Andreev-Lifshitz Model

- Key results for \(T=0 \) strengthened by quantum fluctuations
$T = 0$ Phase Diagram

$\varepsilon_b = 4 \varepsilon_a \quad \Delta = 0.2 \varepsilon_a$
Finite T

Illustrate with $\varepsilon_b = \infty$, $t_a = 0$, $\Delta = \varepsilon_a$

Two coupled order parameters:

- $n = \langle n \rangle$, defect concentration
- $b = \langle b \rangle$, condensate amplitude
Finite T Phase Diagram (schematic)
These are transition curves for n. NCRI is related to transition in b.
NCRI transition occurs below defect density transition transition second order
NCRI transition occurs with defect density transition first order
Casual Comparison to Experiments
T=0 Superfluid Density

- Kim and Chan reported max $\rho_s/\rho \sim 1\%$
 Our MFT gives 3 - 9%
 Value should be reduced by quantum (phase) fluctuations
 Fluctuations stabilize supersolid vs. defect free state

- More recent data shows ρ_s increasing then decreasing with pressure/density
 Within our model, ρ_s favored by small Δ, ε_a, large $t_{a,b}$
 $t_{a,b}$ may be non-monotonic with ρ
Penn State data
Finite $T \rho_s$

- data suggests transition smeared by disorder
- specific heat shows no critical behavior

Two possibilities for pure system:
- second order transition \textit{not} in X-Y universality class
- first order transition

Transition is first order at $T=0$ in our model
May also be first order at finite T
He 3 Impurities

Expt, with increasing He3 concentration (ppm):
- T_c increases
- low $T \rho_s$ decreases
- NCRI not observable beyond 0.1% He3 concentration

Qualitative agreement:
- He 3 favors defects due to its smaller mass
 $\Rightarrow T_c$ increases
- Impurities localize vacancies
 \Rightarrow reduce ρ_s and eventually destroys Bose condensation
 (dirty bosons)
Conclusions

- Vacancies can condense in solid He4 in spite of negative evidence from normal state
- Normal solid defect free, supersolid defect rich
 -- first order transition
 -- commensurate - incommensurate
 -- change in local density profile
- No intrinsic contradiction between Kim and Chan’s observation and existing normal solid data