Role of 3He Disorder in supersolids

E. Abrahams (Rutgers)

AVB (Los Alamos)

Discussions with Cristian Batista

- 1. Outlines of the GL theory on effects of disorder on supersolid
- Two order parameters needed for supersolids: density and supercomponent
- Two types of disorder: heavier and lighter substitution atoms
- Lighter atoms (3He) might enhance Tc and
- will suppress stiffness
- 2. Comparison with experimental data most likely indicates that either as measured this is not Tc (see also M. Chan's remarks) or it is a highly nontrivial sstate.

Two order parameters in supersolid state

SS order parameter $\psi(r)$

4He wave function

Coarse graining to get to long length scale

Coupling between density and vacancy fields

Density-density coupling

$$\pm p(\vec{r}) |1+\sqrt{\vec{r}}|^2$$

Grad-grad coupling

+ higher order terms

GL description

5p(v)

Density modulation due to external potential, disorder, 3He impurities Simple GL arguments can not fix the sign of density-density coupling

Wave function description

Each site has three possible states:

Doubly occupied, "forbidden"

Singly occ and empty allowed

If all sites are occupied

Rotate spin on each site to allow finite amplitude of empty site

Boson creation amplitude

Empty site amplitude

Prob of Empty = Nv = Sin q:
Prob of single occupied = Nb = corq;

 $n_v + n_b = 1$

Effects of 3He impurities on SS

- 3He requires more "shoulder" space in 4He matrix for zero point motion
- It is an attractive site for vacancies
- Increases Tc in GL?!
- Illustrated in WF approach

(a)
$$H = H_0 + H_{int}$$
 $Y = \prod_i (b_i \cos \varphi_i + e \sin \varphi_i) b$

Hint =
$$\sum_{i}$$
 U_{i} b_{i} b_{i}
 $\langle +|$ b_{i} b_{i} $|+\rangle = \cos^{2}q_{i} = 1 - \sin^{2}q_{i}$
 $\langle +|$ $+|$ $+|$ $+\rangle = \sum_{i} U_{i} \cos^{2}q_{i} \sim -\sum_{i} U_{i} \sin^{2}q_{i}$
 $= -\int d\vec{r} \ U(\vec{r}) |+|$

Potential that is repulsive for bosons is attractive for vacancies

$$h_v + h_b = 1$$

3He has larger zero point motion amplitude

Zero point motion amplitude

Pushes 4He aside

Less of $n_b = more of n_v$

Take
$$U(t) = \lambda \beta(t)$$

Is local 3He density is an attractive region for vacancy

Not a random mass term

Anti Anderson theorem

Contrast to SC case and Anderson Theorem (no Tc enhancement)

Kinetic energy and stiffness

April
$$f(x) = f(x) = f(x) = f(x) = f(x) = f(x) = f(x) = f(x)$$

assuming $f(x) = f(x) = f(x)$

Locally stiffness increases. Global stiffness (q ->0) will decrease as is the case of granular SC

Possibility where this can be modified: 3He induces extra vacancies

Comparison with experiments

 Tc will go up but not as much as what is measured by Chan et al. It is most likely due to vortices/dislocations ...

Numbers

 Stiffness goes down but by a more modest amount

Conclusion

- Supersolid state can benefit from lighter atoms if they attract vacancies.
- We have devloped a GL theory that does predict Tc increase but ot on the observed scale.

- Tc increase seen by PSU group is HUGE for any known to date superstate: Tc nearly doubles by adding 10^-3 % impurities
- Implication is that either this is not Tc or this is a highly nontrivial superstate.