Vacancies-Excitons Mechanism of Supersolidity (in helium?)

Michael Ma University of Cincinnati

Collaborators:

Fuchun Zhang Dai Xi: HKU

The Supersolid State of Matter KITP, 2006

Physical Review B 72, 132504 (2005)

Intriguing possibility for quantum crystal:

•
$$\rho(r) = \rho_0 \cos(G \cdot r)$$

- *but* atoms mobile
- mobile atoms (bosons) can Bose condense
- exhibit superfluidity
- SUPERSOLID

NCRI observed in solid He4 by 3 groups

Bulk, equilibrium property?

Vacancy mechanism of supersolid

- Andreev and Lifshitz quantum fluctuations favor finite density of vacancies even at T=0.
 Vacancies are mobile and can Bose condense.
- Chester Jastrow wavefunctions generally have ODLRO, including ones describing solid order. Speculate due to vacancy condensation.
- Presence of vacancies in supersolids necessary provided there is no vacancy-interstitial symmetry, shown by Prokofev and Svistunov recently.

But expt => vacancies activated

X-ray data Simmons

data fit to $c(T) \sim exp - (f/kT)$

 $E_v \sim 10 \text{ K}$

- Supersolid He4 not observed until Kim and Chan's expt
- Previous expts and theoretical calculations place strict limit on vacancy density in normal solid
- High activation energies for defects $E_v \sim 10 15$ K $E_i \sim 50$ K

```
Quandary: How can defects of such high activation energies condense at low temperature, T_c \sim 0.2 K?
```

We provide one resolution to this quandary. New mechanism for vacancy condensation.

Proposed Resolution

First order transition At T=0, n_v = 0 in normal solid finite in supersolid

"Vacuum" switching

vacancies condense in background of another type of defectons called "excitons"

 Normal-Supersolid transition accompanied by Commensurate-incommensurate transition Change in local density profile

Andreev-Lifshitz Vacancy Model

Defect free solid - Mott insulator

Andreev-Lifshitz Vacancy Model

If $E_v < 0$, spontaneous creation of vacancies at T = 0 Such vacancies will Bose condense

 $E_v < 0$ not supported by expts or theories

Interstitial Model

 $E_{b} = \varepsilon_{b} - zt_{b}$ $t_{b} > t_{a}, \text{ but } \varepsilon_{b} >> \varepsilon_{a}, \text{ so } E_{b} > E_{a}$

Interstitial condensation even more unfavorable.

Have Your Cake and Eat it Too Model

Third type of defect : bound vacancy-interstitial or "exciton"

Key physics:

Vacancies can Bose condense easier over exciton background than over defect free background

- activation energy $\varepsilon_a \Delta < \varepsilon_a$
- vacancy hops with t_b, not t_a

Instability criteria $\varepsilon_a - \Delta - zt_b$

If condensation amplitude sufficiently large, condensation energy $> \Delta$ vacancies Bose condense

stable normal solid defect free $n_{ex} = n_v = 0$

unstable normal solid defect rich $n_{ex} \neq 0, n_v = 0$

stable supersolid defect rich $n_{ex} \neq 0, n_{v} \neq 0$

- T = 0 transition first order
- normal supersolid transition

commensurate - incommensurate transition change in local density profile

Change in Local Density Profile

Microscopic Wavefunction

Normal solid
$$\psi = \prod_{i=1}^{N} b_i^+ |vacuum\rangle$$

 b_i^+ creates a He atom in localized state $\phi_i = \phi(\overline{r-R_i})$

commensurate φ has single peak

Supersolid
$$\psi_{SS} = \prod_{i=1}^{N_0} (u + va_i^+) |vacuum\rangle$$

 a_i^+ creates a He atom in localized state $\chi_i = \chi(r-R_i)$ $Iu^2I = vacancy fraction$

N < N₀, incommensurate χ less localized than ϕ , perhaps even multiipeak

Equivalence between Jastrow and Nosanow-Jastrow wavefunctions with vacancies

$$\begin{split} \psi_{SS} &= \prod_{i=1}^{N_0} (u + va_i^*) |vacuum\rangle \\ &= P_G \left(\sum_{i=1}^{N_0} \frac{v}{u} a_i^* \right)^N |vacuum\rangle \\ &\sim P_G \left(\int dr \sum_{i=1}^{N_0} \chi(r - R_i) \psi^*(r) \right)^N |vacuum| \\ &= P_G \prod_{\alpha} \left(\sum_{i=1}^{N_0} \chi(r_{\alpha} - R_i) \right) \end{split}$$

Single-Site Mean Field Theory

Decouple K.E.

ta⁺a --> t<a⁺>a + ta⁺<a> - t<a⁺><a> <a> solved self-consistenty to give Bose condensed amplitude

- $E = E_{MF}$ + elastic energy for change in lattice constant
- Respect strong on-site correlations (hard core)
- Successful for other lattice boson models for d≥2 at T=0
- Gives exact instability criteria for Andreev-Lifshitz Model
- Key results for T=0 strengthened by quantum fluctuations

Finite T

Illustrate with ε_{b} = infinity, t_{a} = 0, $\Delta = \varepsilon_{a}$

Two coupled order parameters: n = <n>, defect concentration b = , condensate amplitude

Finite T Phase Diagram (schematic)

Finite T Phase Diagram (schematic)

These are transition curves for n. NCRI is related to transition in b

NCRI transition

NCRI transition occurs below defect density transition transition second order

NCRI transition

transition first order

Casual Comparison to Experiments

T=0 Superfluid Density

- Kim and Chan reported max ρ_s/ρ ~ 1% Our MFT gives 3 - 9% Value should be reduced by quantum (phase) fluctuations Fluctuations stabilize supersolid vs. defect free state
- More recent data shows ρ_{s} increasing then decreasing with pressure/density

Within our model, ρ_{s} favored by small $\Delta,$ $\epsilon_{\text{a}}\text{,}$ large $t_{\text{a,b}}$

, $t_{\text{a},\text{b}}$ may be non-monotonic with ρ

Finite T ρ_{s}

- data suggests transition smeared by disorder
- specific heat shows no critical behavior

Two possibilities for pure system:

-second order transition *not* in X-Y universality class

- first order transition

Transition is first order at T=0 in our model May also be first order at finite T

He 3 Impurities

Expt, with increasing He3 concentration (ppm):

- $-T_c$ increases
- low T ρ_{s} decreases
- NCRI not observable beyond 0.1% He3 concentration

Qualitative agreement:

- He 3 favors defects due to its smaller mass
 - $=> T_c$ increases
- Impurities localize vacancies
 - => reduce ρ_{s} and eventually destroys Bose condensation (dirty bosons)

Conclusions

- Vacancies can condense in solid He4 in spite of negative evidence from normal state
- Normal solid defect free, supersolid defect rich
 - -- first order transition
 - -- commensurate incommensurate
 - -- change in local density profile
- No intrinsic contradiction between Kim and Chan's observation and existing normal solid data