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Discrete geometry and singularities

Loop quantum cosmology provides difference equations for
wave functions on superspaces.

−→ Repulsion experienced by wave packets. Avoids singularity
if bounce occurs; effective picture of geometry valid, but
dynamics non-classical.
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dynamics non-classical. Or,

−→ States enter deep quantum regime. More general, but rarely
geometrically intuitive. Well-posed recurrence scheme even
around classically singular geometries (e.g. V = 0 in isotropy).

Several examples known in different models. For extension to
more general situations, appeal to BKL difficult: Bounces avoid
asymptotic regime; structure of difference equations on
superspace different from Einstein’s equation.

Non-singular behavior in loop quantum gravity – p.2



Discrete geometry and singularities

Loop quantum cosmology provides difference equations for
wave functions on superspaces.

−→ Repulsion experienced by wave packets. Avoids singularity
if bounce occurs; effective picture of geometry valid, but
dynamics non-classical. Or,

−→ States enter deep quantum regime. More general, but rarely
geometrically intuitive. Well-posed recurrence scheme even
around classically singular geometries (e.g. V = 0 in isotropy).

Several examples known in different models. For extension to
more general situations, appeal to BKL difficult: Bounces avoid
asymptotic regime; structure of difference equations on
superspace different from Einstein’s equation.

Plan: (i) Origin of difference equations.
(ii) Solvable bounce model and effective equations.
(iii) Difference equations and space-like singularities.
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Isotropy, spatially flat

Connection Aia = c̃δia, densitized triad Eai = p̃δai ; conjugate pair
(c̃, p̃) with |p̃| = 1

4a
2 (sgn(p̃): orientation), c̃ = 1

2γȧ.

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

Non-singular behavior in loop quantum gravity – p.3



Isotropy, spatially flat

Connection Aia = c̃δia, densitized triad Eai = p̃δai ; conjugate pair
(c̃, p̃) with |p̃| = 1

4a
2 (sgn(p̃): orientation), c̃ = 1

2γȧ.

Holonomies along symmetry
generators:

he = P exp

∫

e
Aiaτiė

adt

= cos(1
2 ∫
e
c̃) + 2τiė

i sin(1
2 ∫
e
c̃)

Basic lattice states

〈c|{µv,I}〉 =
∏

v,I

exp(1
2 iµv,I ∫

ev,I

c̃)

with edge labels µv,I ∈ Z.
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3

1

2

e

v,1

v,1

v
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Exact isotropy

Orthonormal states 〈c|µ〉 = eiµc/2, µ =
∑

µv,I and basic
operators

êiµ′c/2|µ〉 = |µ+µ′〉
p̂|µ〉 = 1

6γℓ
2
Pµ|µ〉

from p̂ = −1
3 i~γG

∂
∂c .
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Exact isotropy

Orthonormal states 〈c|µ〉 = eiµc/2, µ =
∑

µv,I and basic
operators

êiµ′c/2|µ〉 = |µ+µ′〉
p̂|µ〉 = 1

6γℓ
2
Pµ|µ〉

from p̂ = −1
3 i~γG

∂
∂c .

Operator algebra follows from full holonomy-flux algebra:
suitable lattice operators preserve distributional states
supported only on isotropic connections.
Unique representation in full theory distinguishes representation
of reduced models, inequivalent to Wheeler–DeWitt
representation.

(êiµ′c/2 not weakly continuous in µ′; p̂ with discrete spectrum.)
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Hamiltonian constraint

C[N ] =
1

16πγG

∫

Σ
d3xN

(

ǫijkF
i
ab

Ea
j E

b
k√

|detE|

− 2(1 + γ−2)(Aia − Γia)(A
j
b − Γjb)

E
[a
i E

b]
j√

|detE|

)
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Hamiltonian constraint

C[N ] =
1

16πγG

∫

Σ
d3xN

(

ǫijkF
i
ab

Ea
j E

b
k√

|detE|

− 2(1 + γ−2)(Aia − Γia)(A
j
b − Γjb)

E
[a
i E

b]
j√

|detE|

)

Requires inverse determinant, from relation
{

Aia,

∫

√

|detE|d3x

}

= 2πγGǫijkǫabc
EbjE

c
k

√

|detE|

Non-singular behavior in loop quantum gravity – p.5



Hamiltonian constraint

C[N ] =
1

16πγG

∫

Σ
d3xN

(

ǫijkF
i
ab

Ea
j E

b
k√

|detE|

− 2(1 + γ−2)(Aia − Γia)(A
j
b − Γjb)

E
[a
i E

b]
j√

|detE|

)

Requires inverse determinant, from relation
{

Aia,

∫

√

|detE|d3x

}

= 2πγGǫijkǫabc
EbjE

c
k

√

|detE|

For curvature: sa1s
b
2F

i
abτi = ∆−1(hα − 1) +O(∆) -�
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�
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~s1

~s2 ∆ α
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Hamiltonian constraint

C[N ] =
1

16πγG

∫

Σ
d3xN

(

ǫijkF
i
ab

Ea
j E

b
k√

|detE|

− 2(1 + γ−2)(Aia − Γia)(A
j
b − Γjb)

E
[a
i E

b]
j√

|detE|

)

Requires inverse determinant, from relation
{

Aia,

∫

√

|detE|d3x

}

= 2πγGǫijkǫabc
EbjE

c
k

√

|detE|

For curvature: sa1s
b
2F

i
abτi = ∆−1(hα − 1) +O(∆) -�

���
�
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~s1

~s2 ∆ α

Extrinsic curvature:

Ki
a = γ−1(Aia−Γia) ∝

{

Aia,

{

∫

d3xF iab
ǫijkEajE

b
k

√

|detE|
,

∫

√

|detE|d3x

}}
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“Reduced” Hamiltonian constraint

2

v

1

h v+1

h

h

h

v+2

v,1

v+1,2v,2
−1

v+2,1
−1

Schematically:
∑

v

∑

IJK ǫIJKtr(hαIJ
hK [h−1

K , V̂ ]),

i

8πγG~
tr(hv,Ihv+I,Jh

−1
v+J,Ih

−1
v,Jhv,K [h−1

v,K , V̂v])

= −ǫIJK{[(cv,Icv+J,I+sv,Isv+J,I)cv,Jcv+I,J+(cv,Icv+J,I−sv,Isv+J,I)sv,Jsv+I,J ]Âv,K}
+ǫ2IJK{[(cv,Isv+J,I−sv,Icv+J,I)sv,Jcv+I,J+(sv,Icv+J,I+cv,Isv+J,I)cv,Jsv+I,J ]B̂v,K}

where Âv,K := 1
4πiγG~

(

V̂v − cv,K V̂vcv,K − sv,K V̂vsv,K

)

and

B̂v,K := 1
4πiγG~

(

sv,K V̂vcv,K − cv,K V̂vsv,K

)

using cv,I and sv,I for cosines and sines.
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“Reduced” Hamiltonian constraint

2

v

1

h v+1

h

h

h

v+2

v,1

v+1,2v,2
−1

v+2,1
−1

Schematically:
∑

v

∑

IJK ǫIJKtr(hαIJ
hK [h−1

K , V̂ ]),

i

8πγG~
tr(hv,Ihv+I,Jh

−1
v+J,Ih

−1
v,Jhv,K [h−1

v,K , V̂v])

= −ǫIJK{[(cv,Icv+J,I+sv,Isv+J,I)cv,Jcv+I,J+(cv,Icv+J,I−sv,Isv+J,I)sv,Jsv+I,J ]Âv,K}
+ǫ2IJK{[(cv,Isv+J,I−sv,Icv+J,I)sv,Jcv+I,J+(sv,Icv+J,I+cv,Isv+J,I)cv,Jsv+I,J ]B̂v,K}

where Âv,K := 1
4πiγG~

(

V̂v − cv,K V̂vcv,K − sv,K V̂vsv,K

)

and

B̂v,K := 1
4πiγG~

(

sv,K V̂vcv,K − cv,K V̂vsv,K

)

using cv,I and sv,I for cosines and sines.

Exact isotropy: gravitational constraint
Ĉ ∝ −δ−3 sin2(δc)B̂ → −c̃2√p+ · · ·
edge length δ, thus N ∝ δ−3 vertices.
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Difference equation

Action:

Ĉ|µ〉 =
3

16πGδ3γ3ℓ2P
(Vµ+δ − Vµ−δ)(|µ+ 4δ〉 − 2|µ〉 + |µ− 4δ〉)

Operator equation (Ĉ + Ĥmatter)|ψ〉 = 0 to be solved for states
|ψ〉 =

∑

µ ψµ(φ)|µ〉 where ψµ(φ) represents the state in the triad
representation.
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Difference equation

Action:

Ĉ|µ〉 =
3

16πGδ3γ3ℓ2P
(Vµ+δ − Vµ−δ)(|µ+ 4δ〉 − 2|µ〉 + |µ− 4δ〉)

Operator equation (Ĉ + Ĥmatter)|ψ〉 = 0 to be solved for states
|ψ〉 =

∑

µ ψµ(φ)|µ〉 where ψµ(φ) represents the state in the triad
representation.

Results in difference equation for ψµ(φ):

(Vµ+5δ − Vµ+3δ)ψµ+4δ(φ) − 2(Vµ+δ − Vµ−δ)ψµ(φ)

+(Vµ−3δ − Vµ−5δ)ψµ−4δ(φ) = −4
3πGδ

3γ3ℓ2PĤmatter(µ)ψµ(φ)

with volume eigenvalues Vµ = (γℓ2P|µ|/6)3/2.

Ĥmatter fully quantized, including metric coefficients, e.g.

Ĥφ = −1
2~2 ̂|p|−3/2∂2/∂φ2 + |p̂|3/2W (φ).

Non-singular behavior in loop quantum gravity – p.7



Matter Hamiltonian

Hφ = 1
2 |p|−3/2p2

φ + |p|3/2W (φ) contains p−1, but p̂ has discrete
spectrum containing zero: no densely defined inverse.
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Matter Hamiltonian

Hφ = 1
2 |p|−3/2p2

φ + |p|3/2W (φ) contains p−1, but p̂ has discrete
spectrum containing zero: no densely defined inverse.

Classical |p|−3/2 can be rewritten in form suitable for
quantization,

sgn(p)|p|−3/2 =

(

1

12πδγG

3
∑

I=1

tr(τIhI{h−1
I , |p|3/4})

)6

using only positive powers of p and “holonomies” hI = eδcτI .
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Matter Hamiltonian

Hφ = 1
2 |p|−3/2p2

φ + |p|3/2W (φ) contains p−1, but p̂ has discrete
spectrum containing zero: no densely defined inverse.

Classical |p|−3/2 can be rewritten in form suitable for
quantization,

sgn(p)|p|−3/2 =

(

1

12πδγG

3
∑

I=1

tr(τIhI{h−1
I , |p|3/4})

)6

using only positive powers of p and “holonomies” hI = eδcτI .

Eigenvalues
̂(sgn(p)|p|−3/2)µ =

(

4

δγℓ2P
(|pµ+δ|3/4 − |pµ−δ|3/4)

)6

finite, vanish at µ = 0.
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Properties

−→ ψµ(φ) replaces ψ(a, φ) in Wheeler–DeWitt quantization;
Wheeler–DeWitt equation is good approximation when ψµ(φ)
does not vary strongly on small scales µ± 4δ.
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Properties

−→ ψµ(φ) replaces ψ(a, φ) in Wheeler–DeWitt quantization;
Wheeler–DeWitt equation is good approximation when ψµ(φ)
does not vary strongly on small scales µ± 4δ.

−→ Wave function defined for positive and negative µ: sign
corresponds to orientation of triad. Classical singularity µ = 0 in
interior, rather than boundary, of minisuperspace. Extension of
Hilbert space provided. Wave function uniquely extended from
one side to the other: non-singular in internal time µ.
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Properties

−→ ψµ(φ) replaces ψ(a, φ) in Wheeler–DeWitt quantization;
Wheeler–DeWitt equation is good approximation when ψµ(φ)
does not vary strongly on small scales µ± 4δ.

−→ Wave function defined for positive and negative µ: sign
corresponds to orientation of triad. Classical singularity µ = 0 in
interior, rather than boundary, of minisuperspace. Extension of
Hilbert space provided. Wave function uniquely extended from
one side to the other: non-singular in internal time µ.

−→ Two sides provided by basic variables (densitized triad);
extendability consequence of Hamiltonian constraint. Would
have been singular in other ordering choices.
Scenario testable in more complicated models: e.g. Kasner
where one metric component diverges at the classical
singularity; more complicated difference equations in less
symmetric models.
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Solvable model

Consider a free, massless scalar in a flat isotropic geometry:

Ĥφ = −1
2~2 ̂|p|−3/2 ∂2

∂φ2 . For large p, ignoring ̂|p|−3/2 6= “|p̂|−3/2”:

− ∂2

∂φ2
ψ(p, φ) ∝ ̂(sin(c)p)

2
ψ(p, φ) =: Ĥ2ψ(p, φ)

(ordering to be specified).
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Solvable model

Consider a free, massless scalar in a flat isotropic geometry:

Ĥφ = −1
2~2 ̂|p|−3/2 ∂2

∂φ2 . For large p, ignoring ̂|p|−3/2 6= “|p̂|−3/2”:

− ∂2

∂φ2
ψ(p, φ) ∝ ̂(sin(c)p)

2
ψ(p, φ) =: Ĥ2ψ(p, φ)

(ordering to be specified).

Solve for ∂ψ/∂φ, use φ = t as internal time:

i~ψ̇ = Ĥψ = | ̂(sin(c)p)|ψ = 1
2 |i(Ĵ − Ĵ†)|ψ with Ĵ := p̂êxp(ic).

Hamiltonian linear except for norm, linear algebra (sl(2,R)) with
basic operators:

[p̂, Ĵ ] = ~Ĵ , [p̂, Ĵ†] = −~Ĵ† , [Ĵ , Ĵ†] = −2~p̂− ~
2
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Equations of motion

Look at states for which ∆H ≪ 〈Ĥ〉 (conserved); ignore norm of
Ĥ = 1

2i(Ĵ − Ĵ†). Equations of motion for expectation values
d〈p̂〉
dt

=
1

i~
〈[p̂, Ĥ ]〉 = −1

2(〈Ĵ〉 + 〈Ĵ〉∗)

d〈Ĵ〉
dt

=
1

i~
〈[Ĵ , Ĥ ]〉 = −1

2(〈p̂〉 + ~) =
d〈Ĵ〉∗

dt

and fluctuations

Ġpp =
1

i~
〈[p̂2, Ĥ ]〉 − 2〈p̂〉 d

dt
〈p̂〉 = −GpJ −GpJ̄

ĠJJ = −2GpJ , ĠJ̄ J̄ = −2GpJ̄

ĠpJ = −1

2
GJJ − 1

2
GJJ̄ −Gpp , ĠpJ̄ = −1

2
GJ̄ J̄ − 1

2
GJJ̄ −Gpp

ĠJJ̄ = −GpJ −GpJ̄

where GAB = 1
2〈ÂB̂ + B̂Â〉 − 〈Â〉〈B̂〉, and higher moments.
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Solution

〈p̂〉(t) = 1
2(c1e

−t + c2e
t) − 1

2~ , 〈Ĵ〉(t) = 1
2(c1e

−t − c2e
t) + iH

to be restricted to satisfy Ĵ Ĵ† = p̂2,

|〈Ĵ〉|2 = (〈p̂〉 + 1
2~)2 −Gpp +GJJ̄ + 1

4~
2 = (〈p̂〉 + 1

2~)2 + c3

|〈Ĵ〉|2 − (〈p̂〉 + 1
2~)2 = −c1c2 +H2 implies c1c2 = H2 + c3; only

bouncing solutions for −c3 < H2 (conserved).
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Solution

〈p̂〉(t) = 1
2(c1e

−t + c2e
t) − 1

2~ , 〈Ĵ〉(t) = 1
2(c1e

−t − c2e
t) + iH

to be restricted to satisfy Ĵ Ĵ† = p̂2,

|〈Ĵ〉|2 = (〈p̂〉 + 1
2~)2 −Gpp +GJJ̄ + 1

4~
2 = (〈p̂〉 + 1

2~)2 + c3

|〈Ĵ〉|2 − (〈p̂〉 + 1
2~)2 = −c1c2 +H2 implies c1c2 = H2 + c3; only

bouncing solutions for −c3 < H2 (conserved).

Solutions for GAB show be-
havior of dispersions.
Basis for derivation of effec-
tive equations and perturba-
tion theory around solvable
model (without explicit con-
struction of states).

 H

 δ

p(t)

t
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Singularity resolution

Bounce to new semiclassical space-time region in select models
so far. More generally, states will spread, and dispersions (and
higher moments) couple to expectation values. Detailed
geometrical pictures more difficult to develop in such cases.
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Singularity resolution

Bounce to new semiclassical space-time region in select models
so far. More generally, states will spread, and dispersions (and
higher moments) couple to expectation values. Detailed
geometrical pictures more difficult to develop in such cases.

More basic statement using difference equations: any quantum
state extended across classical singularity in superspace
(through deep quantum regime). New region beyond singularity,
but no general statements yet about re-emergence of
semiclassical parts. Available in several situations, non-trivial
consistency checks:

−→ Kasner singularity
−→ Breakdown for perturbative anisotropy
−→ Inhomogeneous situations, BKL spirit?
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Kasner

Diagonal densitized triad Eai = p(i)δai , relation to diagonal metric
components aI by p1 = a2a3 and cyclic.
Kasner solution: aI(t) ∝ tαI with

∑

I αI = 1 =
∑

I α
2
I . One

component always diverges and −1 < αI ≤ 1.

Non-singular behavior in loop quantum gravity – p.14



Kasner

Diagonal densitized triad Eai = p(i)δai , relation to diagonal metric
components aI by p1 = a2a3 and cyclic.
Kasner solution: aI(t) ∝ tαI with

∑

I αI = 1 =
∑

I α
2
I . One

component always diverges and −1 < αI ≤ 1.

In densitized triad: pI(t) ∝ t1−αI , all approach zero at classical
singularity. Becomes interior point of minisuperspace if signs
from triad orientation are taken into account.
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Kasner

Diagonal densitized triad Eai = p(i)δai , relation to diagonal metric
components aI by p1 = a2a3 and cyclic.
Kasner solution: aI(t) ∝ tαI with

∑

I αI = 1 =
∑

I α
2
I . One

component always diverges and −1 < αI ≤ 1.

In densitized triad: pI(t) ∝ t1−αI , all approach zero at classical
singularity. Becomes interior point of minisuperspace if signs
from triad orientation are taken into account.

Difference equation (restricted anisotropy, black hole interior):

2(
√

|ν+2δ|+
√

|ν|)ψµ+2δ,ν+2δ−2(
√

|ν+2δ|+
√

|ν|)ψµ−2δ,ν+2δ

+(
√

|ν+δ|−
√

|ν−δ|)((µ+2δ)ψµ+4δ,ν−(1+2γ2δ2)µψµ,ν+(µ−2δ)ψµ−4δ,ν)

+2(
√

|ν−2δ|+
√

|ν|)ψµ+2δ,ν−2δ−2(
√

|ν−2δ|+
√

|ν|)ψµ−2δ,ν−2δ=0
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Non-singular behavior

Two independent triad variables µ and ν, corresponding to
metric

ds2 =
µ(t)2

|ν(t)|dx
2 + |ν(t)|dΩ2

Classical singularity at ν = 0, wave function uniquely extended
across.
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Non-singular behavior

Two independent triad variables µ and ν, corresponding to
metric

ds2 =
µ(t)2

|ν(t)|dx
2 + |ν(t)|dΩ2

Classical singularity at ν = 0, wave function uniquely extended
across.
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J

J

−

i

+

0

H

I
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Non-singular behavior

Two independent triad variables µ and ν, corresponding to
metric

ds2 =
µ(t)2

|ν(t)|dx
2 + |ν(t)|dΩ2

Classical singularity at ν = 0, wave function uniquely extended
across.

All anisotropies quantized non-perturbatively, discreteness of all
triad components considered.
Alternatively: Treat anisotropy as small parameter, perturbation
on isotropic “background”

µ = ν̄ + ǫ , ν = ν̄ − 2ǫ

Expand wave function and coefficients in difference equation in
anisotropy ǫ and its momentum P (Wheeler–DeWitt limit for
anisotropy but not for isotropic variable).
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Perturbative singularity

Matrix elements of Hamiltonian in perturbative basis,
|s >=

∑

ν̄ sν̄(ǫ)|ν̄ >

< ν̄, ǫ|Ĥ|s >∝
{

Âν̄+4δsν̄+4δ(ǫ) + B̂ν̄sν̄(ǫ) + Ĉν̄−4δsν̄−4δ(ǫ)
}

with coefficients, using ∆3f(ν̄) := 1
6(f(ν̄ + 3δ) − f(ν̄ − 3δ)),

Ĉν̄ = −2
3(|ν̄|1/2 + |ν̄|∆3|ν̄|1/2) + 2

3(|ν̄|1/2 − 2|ν̄|∆3|ν̄|1/2)iǫ

+
(

2
3 |ν̄|−1/2 − ∆3|ν̄|1/2 + |ν̄|∆3|ν̄|−1/2

)

P̂

+3
2

(

1
2 |ν̄|−3/2 + ∆3|ν̄|−1/2 + 1

2 |ν̄|∆3|ν̄|−3/2
)

P̂ 2

−
(

|ν̄|−1/2 + 2∆3|ν̄|1/2 − 2|ν̄|∆3|ν̄|−1/2
)

iǫP̂

+1
3

(

|ν̄|1/2 + 4|ν̄|∆3|ν̄|1/2
)

ǫ2 +O(3)

Non-singular behavior in loop quantum gravity – p.16



Spherical Symmetry

Coupled equations in inhomogeneous models. States:
|ψ〉 =

∑

~k,~µ
ψ(~k, ~µ) r r r

µ− µ µ+
· · · k− k+ · · · (ke ∈ Z, 0 ≤ µv ∈ R)

subject to coupled difference equations (one for each edge)
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Spherical Symmetry

Coupled equations in inhomogeneous models. States:
|ψ〉 =

∑

~k,~µ
ψ(~k, ~µ) r r r

µ− µ µ+
· · · k− k+ · · · (ke ∈ Z, 0 ≤ µv ∈ R)

subject to coupled difference equations (one for each edge)

Ĉ0(~k)ψ(. . . , k−, k+, . . .) + ĈR+(~k)ψ(. . . , k−, k+ − 2, . . .)

+ĈR−(~k)ψ(. . . , k−, k+ + 2, . . .) + ĈL+(~k)ψ(. . . , k− − 2, k+, . . .)

+ĈL−(~k)ψ(. . . , k− + 2, k+, . . .) + · · · = 0

Extended superspace: sgn detE determined by sgnke.
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Spherical Symmetry

Coupled equations in inhomogeneous models. States:
|ψ〉 =

∑

~k,~µ
ψ(~k, ~µ) r r r

µ− µ µ+
· · · k− k+ · · · (ke ∈ Z, 0 ≤ µv ∈ R)

subject to coupled difference equations (one for each edge)

Ĉ0(~k)ψ(. . . , k−, k+, . . .) + ĈR+(~k)ψ(. . . , k−, k+ − 2, . . .)

+ĈR−(~k)ψ(. . . , k−, k+ + 2, . . .) + ĈL+(~k)ψ(. . . , k− − 2, k+, . . .)

+ĈL−(~k)ψ(. . . , k− + 2, k+, . . .) + · · · = 0

Extended superspace: sgn detE determined by sgnke.

Again, extension non-singular. Depends crucially on form
(possible zeros) of coefficients ĈR±(~k), much more non-trivial
than in isotropic models. Structure qualitatively different from
homogeneous models: k+- and k−-terms crucial.
No BKL-type argument for decoupling so far.
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Summary

Basic, possibly general mechanism of non-singular behavior:
extended Hilbert space (compared to Wheeler–DeWitt
quantization) provided by loop quantization (orientations of
densitized triad, connected by difference equation). Non-trivially
generalized to anisotropic and midi-superspace models.
Non-perturbative quantization essential at level of “fundamental”
difference equations.
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Basic, possibly general mechanism of non-singular behavior:
extended Hilbert space (compared to Wheeler–DeWitt
quantization) provided by loop quantization (orientations of
densitized triad, connected by difference equation). Non-trivially
generalized to anisotropic and midi-superspace models.
Non-perturbative quantization essential at level of “fundamental”
difference equations.

Does not refer to physical states and observables; rather, any
state is shown to be extended which must then also apply to
physical states. No guarantee of semiclassical behavior
throughout.
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Summary

Basic, possibly general mechanism of non-singular behavior:
extended Hilbert space (compared to Wheeler–DeWitt
quantization) provided by loop quantization (orientations of
densitized triad, connected by difference equation). Non-trivially
generalized to anisotropic and midi-superspace models.
Non-perturbative quantization essential at level of “fundamental”
difference equations.

Does not refer to physical states and observables; rather, any
state is shown to be extended which must then also apply to
physical states. No guarantee of semiclassical behavior
throughout.

Development of explicit bounce pictures more involved, but
possible by perturbation around solvable model based on
effective equations. Testable whether perturbation theory
remains valid throughout, especially for inhomogeneities.
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