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In general relativity, gravitational field encoded in the very geometry of
space-time ⇒ space-time itself ends at singularities. General
expectation: theory is pushed beyond its domain of applicability. Must
incorporate Quantum Physics.

In LQG, physics does not stop at these singularities. Quantum Geometry
extends its life. Resolution of space-like singularities has been analyzed at
three levels:
i) Quantum Hamiltonian constraint does not break down. (Cosmological
and black hole interior models, some midi-superspaces) (Bojowald);
ii) + construction of the Physical Hilbert space, Dirac observables,
emergent time (homogeneous models);
iii) + Detailed numerical solutions, effective equations and comparison
between the two (homogeneous, isotropic models).
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In LQG, Physics does not stop at these singularities. Quantum Geometry
extends its life. Resolution of space-like singularities has been analyzed at
three levels:
i) Quantum Hamiltonian constraint does not break down. (Cosmology and
black hole interiors, some midi-superspaces (Bojowald);
ii) + construction of the Physical Hilbert space, Dirac observables,
emergent time (homogeneous models);
iii) + Detailed numerical solutions, effective equations and comparison
between the two (homogeneous, isotropic models).

Goal of this talk: Provide a bird’s eye view. Focus on iii) and comment on
i) and ii). Will enable me to bypass more technical issues of LQG and
emphasize the recent qualitative change in the degree of completeness &
precision.

Organization:
1. Conceptual Setting
2. Loop Quantum Cosmology
3. Detailed Models.

– p.



1. Conceptual Setting

Some Long-Standing Questions expected to be answered by Quantum
Gravity Theories from first principles:

⋆ How close to the big-bang does a smooth space-time of GR make
sense? (Onset of inflation?)

⋆ Is the Big-Bang singularity naturally resolved by quantum gravity?
(answer is ‘No’ in the Wheeler-DeWitt theory)

⋆ Is a new principle/ boundary condition at the Big Bang essential?
(e.g. The Hartle-Hawking ‘no-boundary proposal’.)

⋆ Is the quantum evolution across the ‘singularity’ deterministic?
(answer ‘No’ e.g. in the Pre-Big-Bang and Ekpyrotic scenarios)

⋆ What is on the ‘other side’? A quantum foam? Another large, classical
universe? ...
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Long Standing Questions (contd)

⋆ How does one extract physics from solutions to the Hamiltonian
constraint (e.g. WDW equation)? dynamics from the frozen formalism?
Dirac observables? Emergent time?
(Scale factor —natural candidate in the Misner parametrization— not single-valued in closed

models.)

⋆ Can one have a deterministic evolution across the singularity and
agreement with GR at low curvatures, e.g., recollpase in the closed
models?
(Background dependent perturbative approaches have difficulty with the first while

background independent approaches, with second (Green and Unruh))

All these issues resolved in LQC.

Emerging Scenario: Physical sector of the theory can be constructed in
detail. Continuum a good approximation till curvature attains Planck scale.
In simplest models: Vast classical regions bridged deterministically by
quantum geometry. No new principle needed.
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Older Quantum Cosmology (DeWitt, Misner, Wheeler . . . 70’s)

• Since only finite number of DOF a(t), φ(t), field theoretical difficulties
bypassed; analysis reduced to standard quantum mechanics.

• Quantum States: Ψ(a, φ); âΨ(a, φ) = aΨ(a, φ) etc.
Quantum evolution governed by the Wheeler-DeWitt differential equation

k=1, FRW: − (a
∂

∂a
)2Ψ(a, φ) + C1 a4Ψ(a, φ) = C2 a3 Ĥφ Ψ(a, φ)

Without additional assumptions, singularity is not resolved.
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Older Quantum Cosmology (DeWitt, Misner, Wheeler . . . 70’s)

• Quantum States: Ψ(a, φ); âΨ(a, φ) = aΨ(a, φ) etc.
Quantum evolution governed by the Wheeler-DeWitt differential equation

k=1, FRW: − (a
∂

∂a
)2Ψ(a, φ) + C1 a4Ψ(a, φ) = C2 a3 Ĥφ Ψ(a, φ)

Without additional assumptions, singularity is not resolved.

• In LQC, situation is very different due to the Quantum Riemannian
Geometry. How is this possible? In QM we have von Neumann’s
uniqueness theorem!

If one follows the procedure used in LQG, one of the assumptions of the
von Neumann theorem violated ⇒ uniqueness result bypassed.
Inequivalent representations even for mini-superspaces. New quantum
mechanics! (AA, Bojowald, Lewandowski) Novel features precisely in the deep
Planck regime.
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Connection Dynamics: Holonomies and Triads

• Configuration variable: A spin-connection Ai
a which parallel transports

chiral spinors. Conjugate momentum: non-Abelian electric fields Ea
i . Dual

interpretation: orthonormal triads. Gauge group: SU(2): Rotations of
triads (or spin-dyads).

• Surprising uniqueness result: The quantum algebra of holonomies and
triad-fluxes admits a unique diff invariant state (i.e., unique background

independent representation). ( Lewandowski, Okolow, Sahlmann,Thiemann; Fleischhack,) .

• This representation was first constructed explicitly in the early nineties.
High mathematical precision. Provides a Quantum Geometry which
replaces the Riemannian geometry used in classical gravity theories.
(AA, Baez, Lewandowski, Rovelli, Smolin, Thiemann, ...)

• No operator corresponding to the connection itself. Mathematical

Analogy: Û(λ) := ̂exp iλx well-defined but not x̂. This is why
von-Neumann’s result is bypassed in quantum cosmology.
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2. Loop Quantum Cosmology
• In LQG the canonically conjugate variables are:
Ai

a, SU(2) connections and, Ea
i , orthonormal triads.

Spatial homogeneity and isotropy implies
⋆ Aa = c ω̊i

aσi
︸︷︷︸

fixed

, Ea = p e̊a
i σi

︸︷︷︸

fixed

–c ∼ ȧ
–holonomy: he(c) = cos µc 1 + sinµc ėaω̊i

aσi

(Almost periodic in c )
– |p| = a2 .
– p → −p changes only the orientation of the triad.
Large gauge transformation; leaves physics invariant.

⋆ Canonically conjugate pairs:
c, p for gravity φ, pφ for matter

• Loop quantum cosmology:
Key strategy:
Do not naively set H = L2(R, dc) and ĉΨ(c) = cΨ(c); p̂Ψ(c) = −i~dΨ

dc
.

Rather, Follow full theory.
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New Quantum Mechanics

Gravitational Sector:

• States: Ψ(p) =
∑

i Ψi |pi〉 ||Ψ||2 =
∑

i |Ψi|2
Note: < pi|pj >= δij (Kronecker delta, not Dirac!)

• Operators: p̂Ψ(p) = pΨ(p) (self-adjoint);

êxp iµcΨ(p) = Ψ(p + µ) (unitary)
But no connection operator ĉ !

Representation is inequivalent to Schrödinger’s
New Quantum Mechanics possible.
This kinematic structure mimics that of the full LQG.

• Similarly for the Hamiltonian constraint:
Cgrav ∼ (ǫij

kEa
i Eb

j/
√

q)
︸ ︷︷ ︸

Thiemann

F k
ab

︸︷︷︸

holonomy
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Quantum Dynamics
• Quantum Einstein’s Equation: Use a representation in which geometry
(i.e. V̂ ∼ â3) and matter field (i.e., φ̂) are diagonal : Ψ(v, φ)

Then the Wheeler DeWitt equation is replaced by a difference equation:

C+(v) Ψ(v + 4, φ) + Co(v) Ψ(v, φ) + C−(v)Ψ(v − 4, φ) = ĤφΨ(v, φ)

Fundamentally, a constraint equation. Selects physical states. However,
this equation also dictates quantum dynamics.

• To extract physics, we need to:

⋆ Isolate ‘time’ to give meaning to ‘evolution’.
⋆ Solutions to the constraint: Physical states. Introduce a physical inner
product and suitable observables.
⋆ Construct states which represent the actual universe at late time.
‘Evolve back’ towards the big bang. Is the classical singularity ‘resolved’?
In what sense? What is on the ‘other side’ of the classical big-bang?
(Quantum foam?? Another classical universe??)
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3. A Detailed Model
A concrete Example: k = 1 FRW model with a massless scalar field φ.
Instructive because every classical solution is singular; scale factor not a
good global clock; there is classical re-collapse. Provides a foundation for
more complicated models.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

0 1*104 2*104 3*104 4*104 5*104 6*104 7*104 8*104 9*104 1.0*105

φ

v

classical

Classical trajectories (symmetry under v → −v)

– p. 12



Basic Strategy

• The quantum Hamiltonian constraint takes the form:

−Θ Ψ(v, φ) = ∂2
φΨ(v, φ) (⋆)

where Θ is a positive, self-adjoint difference operator independent of φ

Θ Ψ(v, φ) = C+(v) Ψ(v + 4, φ) + Co(v) Ψ(v, φ) + C−(v) Ψ(v − 4, φ).

Suggests φ could be used as ‘emergent time’ also in the quantum theory.
Relational dynamics.

Physical states: solutions to (⋆), invariant under v → −v. Observables: p̂φ

and V̂ |φ=φo
. Inner product: Makes these self-adjoint or, equivalently, use

group averaging. Analogy with KG equation in a static space-time.
Semi-classical states: Generalized coherent states.

• Use numerical methods to solve the Quantum Constraint. Numerics
Essential! Furthermore, not entirely straightforward.
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Results

Assume that the quantum state is semi-classical at a late time and evolve
backwards and forward. Then:

• The state remains semi-classical till very early and very late times,
i.e., till R ≈ 13π/lp2 or ρ ≈ 0.82ρPl. ⇒ Space-time can be taken to be
classical during the inflationary era.

• In the deep Planck regime, semi-classicality fails. But quantum
evolution is well-defined through the Planck regime, and remains
deterministic. No new principle needed.

• Big bang replaced by a quantum bounce. A new ‘repulsive force’ due to
quantum geometry. Unlike in other approaches with bounces,
unambiguous evolution across the ‘bridge’, provided by the quantum
Einstein equation. Hartle-Hawking ‘No Boundary Proposal’.

• No unphysical matter. Notion of semi-classicality precise (∼ Coherent
States). Unlike in WKB methods, fluctuations under full control. Notion of
semi-classicality very weak.
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• Effective Friedmann Eq:

(ȧ/a)2 = (8πG/3)(ρ − ρ1(v)) [ρ2(v) − ρ/ρcrit]

with ρcrit ≈ 0.82ρPlanck

• Recollapse: ρ(v) = ρ1(v); ρmin = (3/8πGa2
max)

(
1 + O(ℓ4Pl/a4)

)

For pφ = 5 × 103 ~, amax ≈ 23ℓPl, Agreement with the classical Friedmann
formula to one part in 105. For macroscopic universes, LQC prediction on
recollapse indistinguishable from the classical Friedmann formula.

• Bounces: ρ(v) = ρ2(v); ρmax = ρcrit

(
1 + O(ℓ2Pl/a2

min)
)

For pφ = 5 × 103 ~, amin ≈ 5.9ℓPl; ρmax equals ρcrit to within 2%. For
large universes, the two are indistinguishable.

• For a universe which attains amax ≈ 1 Mpc, amin ≈ 6 × 1016cm3 ≈
10115ℓ3Pl! Quantum geometry corrections to ‘inverse volume’ play no role

at all. Rather, the origin of the bounce lies in the non-local nature of F̂ab

operator (holonomy).
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Summary
• In LQG, the interplay between geometry and physics is elevated to
quantum level. Physics does not end at singularities.

• In k = 1 and k = 0 FRW models with or without Λ, complete control on
the physical sector of the theory. LQC evolution deterministic across the
classical big bang and big crunch for all quantum states. For states which
are ‘semi-classical at late times,’ detailed numerical and effective
descriptions & comparison between the two. ρcrit ≈ 0.8ρPl for all these
models.

• Universes with amax ∼ 25ℓPl already semi-classical! Repulsive force of
quantum geometry arises and dies very quickly but makes dramatic
changes to classical dynamics.

• Challenge to background independent theories: Detailed recovery of
classical GR at low curvatures/densities (Green and Unruh). Met in
cosmological models.
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• More general models:
Level ii) Anisotropies (AA, Chiou, Vandersloot).
level i) Anisotropies (Bojowald, Date, Vandersloot); black hole interiors (AA,

Bojowald, Modesto, Cartin & Khanna); midi-superspaces (Bojowald).
A large body of work on Effective equations and their applications, e.g.
Chaos in Bianchi IX; inflation; power suppression at large angular scales
....

A Sample of Current work:

• Midisuperspaces, particularly Gowdy Models (Several groups); Inclusion of
Inhomogeneities (Bojowald et al); Implications to string theory inspired
models (Singh, Verschagin, Vandersloot); Relation between LQC and LQG (AA,

Engle, Lewandowski, Koslowski, Thiemann, ...).

• Effective Equations: The Hamiltonian analog of effective action
framework developed to obtain quantum corrections to Einstein’s
equations and systematically applied to quantum cosmology (AA, Bojowald,

Skirzewski, Taveras, Willis, ...).

• General singularity resolution theorems? (Planck scale non-locality of
Fab & quantum geometry repulsion.)
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Supplemet 1:Uniqueness of the LQG Representation

Question postponed during the seminar (regarding the unique diff
invariant state in LQG kinematics). Need to go back a bit and recall a few
facts re general mathematical framework of QFT

In the algebraic approach to QFT, one begins with a ⋆-algebra A of basic
variables. A state f is a positive linear function (PLF) on this algebra.
Given such a state, there is a canonical way to construct a representation.
In this representation, the given (abstract) state f determines a (concrete)
vector Ψf〉 in the Hilbert space and the original PLF equals the
expectation value of operators in this vector: f(a) = 〈Ψf |a|Ψf〉

In LQG kinematics, the basic algebra is generated by holonomies and
fluxes. The recent theorem of Lewandowski et al is that this algebra
admits a unique diff invariant state. The GNS construction gives the
kinematical Hilbert space of LQG. Of course in final quantum dynamics
there are infinitely many diff invariant states. But they are states on the
algebra of diff invariant operators which is distinct from the original
holonomy-flux algebra.

– p. 24


	
ed 1. Conceptual Setting
	
ed Long Standing Questions (contd)
	�lue {Older Quantum Cosmology,, {	iny {�rown {(DeWitt, Misner, Wheeler ldots 70's)}}}
}
	�lue {Older Quantum Cosmology,, {	iny {�rown {(DeWitt, Misner, Wheeler ldots 70's)}}}
}
	�lue {Connection Dynamics: Holonomies and Triads}
	
ed 2. Loop Quantum Cosmology
	
ed New Quantum Mechanics
	
ed {Quantum Dynamics}
	
ed 3. A Detailed Model
	
ed {Basic Strategy}
	
ed Results
	
ed Summary
	Supplemet 1:{
ed Uniqueness of the LQG Representation}

