

### Late Helium Flashes and Hydrogen-Poor Stars

K. Werner, T. Rauch

University of Tübingen, Germany and

J.W. Kruk

Johns Hopkins University, U.S.A.

### **Outline**

- Introduction
- He-shell flashes and nucleosynthesis in AGB stars
- Consequences of a late He-shell flash in post-AGB stars
- Observational results: Element abundances in the hottest H-poor post-AGB stars
- Conclusions

- There exists a H-deficient evolutionary sequence of post-AGB stars
  - → Wolf-Rayet [WC]-type central stars of planetary nebulae
  - → PG1159-type (pre-) white dwarfs
  - → non-DA white dwarfs

similar surface chemistry (He-C-O dominated)

pure-He surface (gravitational settling)



Origin of H-deficiency: late He (shell) flash during post-AGB evolution

 → ingestion and burning (or dilution) of hydrogen

Focus of this talk: determination of element abundances in PG1159 stellar atmospheres; surface composition reflects chemistry of region between H- and He-burning shells in precursor AGB star

Out of focus: detailed course of late He-flash (see talk by Ken Shen)

- Why are abundance studies interesting?
- Abundance analysis reveals details of nucleosynthesis and mixing processes in AGB-star interiors
- Constrains uncertainties in shell-flash physics (e.g. convective overshoot)
- Useful verification of stellar evolution models: do they predict correct yields for modeling Galactic chemical evolution?

We use the outcome of a *late He-shell flash* as a tool to study the characteristics of AGB stars that perform thermal pulses (=He shell flashes)

### Modeling of PG1159-star atmospheres is an interesting and challenging task:

- They are the hottest stellar atmospheres (except neutron stars), non-LTE modeling is essential
- Most spectral lines are from highly ionized elements (e.g. Ne VIII)
  - Line identification means "entering new territory"
  - UV spectroscopy necessary (HST, FUSE; hard to get)
  - Problems with atomic data: level energies, f-values are often hidden in literature, or inaccurate, or simply non- existing



Evolutionary tracks for a 2  $M_{\odot}$  star. Born-again track offset for clarity. (Werner & Herwig 2006)



from Lattanzio (2003)

### s-process in AGB stars

Main neutron source is reaction starting from <sup>12</sup>C nuclei (from 3α-burning shell):

 $^{12}C(p,\gamma)^{13}N(\beta+\nu)^{13}C(\alpha,n)^{16}O$  protons mixed down from H envelope



- Nucleosynthesis products of s-process in intershell layer not directly visible
- Intershell matter is hidden below massive, 10<sup>-4</sup> M<sub>☉</sub>, convective hydrogen envelope
- Dredge-up of s-processed matter to the surface of AGB stars, spectroscopically seen
- In principle: Analysis of metal abundances on stellar surface allows to conclude on many unknown burning and mixing processes in the interior, but: difficult interpretation because of additional burning and mixing (hot bottom burning) in convective H-rich envelope
- Fortunately, nature sometimes provides us with a direct view onto processed intershell matter: exposed by H-deficient post-AGB stars as consequence of late He-shell flash
- Our work concentrates on PG1159 stars; famous progenitors are FG Sge and Sakurai's star, suffering late flashes in 1894 and 1996, respectively



#### PG1159 stars

40 objects known

Mean mass 0.57 M<sub>o</sub>

Atmospheres dominated by C, He, O, and Ne, e.g.

He=33%, C=48%, O=17%, Ne=2% (mass fractions)

= chemistry of material between H and He burning shells in AGBstars (intershell abundances)



Evolutionary tracks for a 2 M<sub>☉</sub> star. Born-again track offset for clarity. (Werner & Herwig 2006)



- 1. Very late thermal pulse (VLTP): He-shell burning starts on WD cooling track. Envelope convection above He-shell causes ingestion and burning of H. No H left on surface.
- 2. Late thermal pulse (LTP): He-shell burning starts on horizontal part of post-AGB track (i.e. H-shell burning still "on"). Envelope convection causes ingestion and dilution of H. Very few H left on surface (below 1%), spectroscopically undetectable in PG1159 and [WC] stars.
- 3. "AGB final" thermal pulse (AFTP): He-shell burning starts just at the moment when the star is leaving the AGB. Like at LTP, H is diluted but still detectable: H≈20%.

# Element abundances in PG1159 stars from spectroscopic analyses

- Abundances of main constituents, He, C, (O) usually derived from optical spectra (He II, C IV, O VI lines)
- Trace elements: almost exclusively from UV spectra (HST, FUSE)
- Model atmospheres: Plane-parallel, hydrostatic, radiative equilibrium, NLTE

### Hydrogen and nitrogen

- Hydrogen discovered in four PG1159 stars, so-called "hybrid PG1159s", Balmer lines, H=0.35
- Can be explained by AFTP evolution models



- Nitrogen: Discovered in some PG1159 stars, N=0.001-0.01, strict upper limits for some stars: N<3 ·10<sup>-5</sup>
- Nitrogen is a reliable indicator of a LTP or VLTP event: N<0.001⇒LTP, N</li>
   ≈0.01⇒VLTP (nitrogen produced by H ingestion & burning)

Hence: From H and N abundances we can conclude when the star was hit by late TP



- Synthesized in He-burning shell starting from <sup>14</sup>N (from previous CNO cycling) via <sup>14</sup>N( $\alpha$ ,n)<sup>18</sup>F(e+ $\nu$ )<sup>18</sup>O( $\alpha$ , $\gamma$ )<sup>22</sup>Ne
- Evolutionary models predict Ne≈0.02
- Confirmed by spectroscopic analyses of several NeVII lines





NeVII 973.3Å, one of strongest lines in FUSE spectra, first identified 2004 (Werner et al.)

NeVII 3644Å first identified 1994 (Werner & Rauch)

• Newly discovered NeVII multiplet in VLT spectra (Werner et al. 2004):



- Allows to improve atomic data of highly excited NeVII lines (line positions, energy levels).
- Was taken over into NIST atomic database (Kramida et al. 2006).

• The NeVII 973Å line has an impressive P Cygni profile in the most luminous PG1159 stars (first realized by Herald & Bianchi 2005):



In conclusion: Neon abundance in PG1159 stars agrees with predictions from late-thermal pulse stellar models.

• Recent identification of NeVIII (!) lines in FUSE spectra (Werner et al. 2007) has important consequences



Allows more precise T<sub>eff</sub> determination for hottest stars

### Fluorine (19F)



- Interesting element, its origin is unclear: formed by nucleosynthesis in AGB stars or Wolf-Rayet stars? Or by neutrino spallation of <sup>20</sup>Ne in type II SNe?
- Up to now F only observed as HF molecule in AGB stars, F overabundant (Jorissen et al. 1992), i.e. AGB stars are F producers
- Would be interesting to know the AGB star intershell abundance of F, use PG1159 stars as "probes"!
- Discovery of F V and F VI lines in a number of PG1159 stars (Werner et al.



### Fluorine (19F)



- Wide spread of F abundances in PG1159 stars, 1-200 solar
- Qualitatively explained by evolutionary models of Lugaro et al. (2004),
   large F overabundances in intershell, strongly depending on stellar mass:



Range of fluorine intershell abundance coincides amazingly well with observations !!!

But: we see no consistent trend of F abundance with stellar mass (our sample has  $M_{initial}$ =0.8-4  $M_{\odot}$ )

Conclusion: fluorine abundances in PG1159 stars are (well) understood

### **Argon**

- Up to now, never identified in any hot star
- First identification of an Ar VII line (λ 1063.55 Å) in several hot white dwarfs and one PG1159 star (Werner et al. 2007);
- Argon abundance solar, in agreement with AGB star models, intershell abundance gets hardly reduced (Gallino priv. comm.)



### **Silicon**

- Si abundance in AGB star models remains almost unchanged; solar Si abundances expected in PG1159 stars
- Results for five PG1159s show wide range, from solar down to <0.05 solar

Large Si scatter cannot be explained by stellar models.



### Sulfur

- Discovered in a number of PG1159 stars by identification of S VI resonance doublet λλ 933, 945 Å
- One PG1159 star shows S solar while five others have 0.1 solar
- In contrast, only mild depletion occurs in stellar models: S=0.6 0.9 solar.

Conclusion:
Strong S deficiency **not understood**.



#### Iron and nickel

- Expectation from stellar models: Slight depletion of Fe, down to ≈90% solar in the AGB star intershell, because of n-captures on <sup>56</sup>Fe nuclei (s-process)
- To great surprise, significant Fe deficiency was claimed for all PG1159 stars examined so far (1-2 dex subsolar)
- Where has the iron gone?
- s-process much more efficient? Was Fe transformed into Ni? Is Ni overabundant? If not, then Fe-deficiency is even harder to explain!

#### Abell 78 [WC]-PG1159 transition object

Fe abundance variation: 1/10 and 1/100 solar



#### Abell 78 [WC]-PG1159 transition object

Fe abundance variation: 1/10 and 1/100 solar



#### **Nickel**



- best chance for detection in far-UV range
- Ni VI lines, but very weak in models
- not found in observations
- compatible with solar abundance
- no Ni overabundance

Reiff et al. (2008)

### **Nickel**



Other example: AFTP central star NGC 7094

Nickel is depleted!

Ziegler et al. (in prep.)

solar and 0.1 solar Ni model; FUSE observation

## Dream: Discovery of trans-iron group elements in hottest post-AGB stars

- Strong Ge overabundance (10\*solar) found in some PNe (Sterling et al. 2002)
- Interpreted as consequence of late TP, but in contrast, other s-process elements like Xe, Kr should also show strongest enrichment, which is **not the case** (Sterling & Dinerstein 2006, Zhang et al. 2006).
- This is independent evidence that our knowledge about nucleosynthesis and, hence, stellar yields is rather limited
- It would be highly interesting to discover these (and other) n-capture elements in PG1159 stars
- Atomic data is one problem (almost no UV/optical line data available for high ionisation stages)
- But the main problem is: Lines are very weak, need much better S/N





Fig. 1.—Composition profile showing the intershell abundances (in log Y, where mass fraction X = YA) just before the last computed TP. The shaded region is the inner edge of the convective envelope, and a PMZ of  $0.002~M_{\odot}$  was used in both models. We show abundances for selected isotopes from (a) the  $3~M_{\odot}$ , Z = 0.012 model, in which the Ge intershell abundance after the last TP is 40 times solar, and (b) the  $2.5~M_{\odot}$ , Z = 0.004 model, in which the Ge intershell abundance is 63 times solar. The intershell abundances are typically diluted by 1 order of magnitude at the surface by the last TDU episode. [See the electronic edition of the Journal for a color version of this figure.]

Composition profile of intershell abundances before last computed TP. Ge abundance near 10<sup>-6</sup>, could be detectable spectroscopically (we found Ar at that abundance level in a H-rich central star).

Search for these species (Ge, Ga, As, Xe, Kr ....) is not completely hopeless. Future HST/COS spectroscopy might play key role.

### **Conclusions**

- Late He-shell flash phenomenon causes H-deficient post-AGB evolutionary sequence
- Stellar atmospheres are composed of former AGB-star intershell material
- We actually see *directly* the outcome of AGB nucleosynthesis
- Observed abundances represent a strong test for stellar models and predicted metal yields
- Abundances of many atmospheric constituents (He,C,N,O,Ne,F,Ar) are in agreement with stellar models
- But some elements point out significant flaws: S and Si
- The extent of the observed iron deficiency is most surprising and lacks an explanation. Efficiently destroyed by n-captures?