Observational constraints on the progenitors of II-P SNe S. J. Smartt Astrophysics Research Centre Queen's University Belfast Queen's SN & Massive star group: R. Kotak, A. Pastorello, D. Young, M.T. Botticella, S. Valenti, K. Maguire, D. Hunter, C. Trundle, K. Kjaer, M. Fraser, K. Smith, P. Dufton Others: M. Crockett (Oxford) J. Eldridge (IoA), J. Maund (DARK), S. Mattila (Turku), J. Danziger (Trieste), A. Gal-Yam (Weizman), A. Stephens (Gemini) #### Overview and motivation - Direct constraints on progenitor stars - Test of final stages of stellar evolution - Consistency with spectral and lightcurve modeling? - Range in energy and ejected masses: link to explosions? - Black hole and NS formation : which stars # Testing theory Heger et al. (2003); Eldridge & Tout 2004 : now can place observational constraints Nearby SNe discovered by amateur astronomers, LOSS (Filippenko talk) and CHASE (Pignata poster) ## Relative SN rates 10.5 yrs Smartt et al., 2009 | | | Relative | Core-Collapse only | | | | |--------------|-----|------------|--------------------|--|--|--| | Type | No. | / per cent | / per cent | | | | | II-P | 55 | 39.6 | 59.1 | | | | | II-L | 2.5 | 1.8 | 2.7 | | | | | IIn | 3.5 | 2.5 | 3.8 | | | | | IIb | 6 | 4.3 | 6.5 | | | | | Ib | 9 | 6.5 | $9.7 \\ 18.3$ | | | | | Ic | 17 | 12.2 | | | | | | Ia | 37 | 27.6 | | | | | | LBVs | 7 | 5.0 | | | | | | Unclassified | 2 | 1.4 | | | | | | Total | 139 | 100 | 100 | | | | | Total CCSNe | 93 | 66 | 100 | | | | - 19980101-20080630 - 139 SNe discovered in galaxies with V_{vir} <2000 kms⁻¹ (13.2 SNe yr⁻¹) M101 ~26% SN-HST image coincidence rate. VLT:NGC3621, Bresolin et al. 01 NGC3949 # Detection of progenitors Figures from Smartt 2009 ARAA - Within the volume limited, 10.5 yr survey for progenitors: three "gold" events - SN2008bk, SN2005cs, SN2003gd - Red star identified coincident with all three. - Typical magnitudes : M_v ~ -4.5 ; M_I ~ -6.5 - Discovery papers : Van Dyk et al. 03, Smartt et al. 04, Maund et al. 05, Li et al. 06, Mattila et al. 08. # The disappearance of 2003gd SN2003gd: $V=25.8 \pm 0.15$ $V-I=2.5 \pm 0.2$ Smartt et al. 04, Van Dyk et al. 03 Maund & Smartt (2009) Four confirmed cases of disappearance : SN1987A , SN1993J, SN2003gd, SN2005gl (Gal-Yam, later...!) # Mass estimates from stellar evolutionary tracks Red points: Milky Way red supergiants (Levesque et al. 2005) STARS stellar evolutionary tracks SN progenitors: SN2003gd (black), SN2005cs (blue box) See Gezari talk – UV shock breakout from II-P SNe implies RSGs # Other examples: no detection - **SN1999gi** in NGC3184, - HST U+V pre-explosion - D=11Mpc (Leonard et al. 2002) - M ≤ 12 M_☉ - **SN2001du** in NGC1365 - HST *UVI* pre-explosion - D=17Mpc (Cepheid Key P.) - M ≤ 15 M_☉ Smartt et al. 02, Van Dyk et al 02 #### Summary of II-P progenitors: 10.5yr search | Supernova | SN
Type | Galaxy | Galaxy
Class | Distance
Mpc Method | | A_V | $r_{\rm G} \ m (kpc)$ | $r_{ m G}/r_{25}$ | [O/H]
(dex) | $\log L/{ m L}_{\odot}$ (dex) | ZAMS
(M _☉) | |-----------|------------|----------|-----------------|------------------------|------|-----------------|------------------------|-------------------|----------------|-------------------------------|---------------------------| | 1999an | II | IC 755 | SBb | 18.5 ± 1.5 | TF | 0.40 ± 0.19 | 4.7 | 0.82 | 8.3 | < 5.16 | < 18 | | 1999br | II-P | NGC 4900 | SBc | 14.1 ± 2.6 | Kin. | 0.06 ± 0.06 | 3.1 | 0.69 | 8.4 | < 4.76 | < 15 | | 1999em | II-P | NGC 1637 | SBc | 11.7 ± 1.0 | Cep. | 0.31 ± 0.16 | 1.6 | 0.28 | 8.6 | < 4.69 | < 15 | | 1999ev | II-P | NGC 4274 | SBab | 15.1 ± 2.6 | Kin. | 0.47 ± 0.16 | 5.3 | 0.46 | 8.5 | 5.1 ± 0.2 | 16^{+6}_{-4} | | 1999gi | II-P | NGC 3184 | SABc | 10.0 ± 0.8 | Mean | 0.65 ± 0.16 | 3.1 | 0.30 | 8.6 | < 4.64 | < 14 | | 2001du | II-P | NGC 1365 | SBb | 18.3 ± 1.2 | Cep. | 0.53 ± 0.28 | 14.7 | 0.53 | 8.5 | < 4.71 | < 15 | | 2002hh | II-P | NGC 6946 | SABc | 5.9 ± 0.4 | Mean | 5.2 ± 0.2 | 4.1 | 0.45 | 8.5 | < 5.10 | < 18 | | 2003gd | II-P | NGC 628 | Sc | 9.3 ± 1.8 | Mean | 0.43 ± 0.19 | 7.5 | 0.58 | 8.4 | 4.3 ± 0.3 | 7^{+6}_{-2} | | 2003ie | II? | NGC 4051 | SABb | 15.5 ± 1.2 | TF | 0.04 | 7.3 | 0.66 | 8.4 | < 5.40 | < 25 | | 2004A | II-P | NGC 6207 | Sc | 20.3 ± 3.4 | Mean | 0.19 ± 0.09 | 6.7 | 0.79 | 8.3 | 4.5 ± 0.25 | 7^{+6}_{-2} | | 2004am | II-P | NGC 3034 | Sd | 3.3 ± 0.3 | Cep. | 3.7 ± 2.0 | 0.64 | 0.14 | 8.7 | Cluster | 12^{+7}_{-3} | | 2004dg | II-P | NGC 5806 | SBb | 20.0 ± 2.6 | Kin. | 0.74 ± 0.09 | 4.3 | 0.50 | 8.5 | < 4.45 | < 12 | | 2004dj | II-P | NGC 2403 | SABc | 3.3 ± 0.3 | Cep. | 0.53 ± 0.06 | 3.5 | 0.37 | 8.4 | Cluster | 15 ± 3 | | 2004et | II-P | NGC 6946 | SABc | 5.9 ± 0.4 | Mean | 1.3 ± 0.2 | 8.4 | 0.92 | 8.3 | 4.6 ± 0.1 | 9^{+5}_{-1} | | 2005cs | II-P | NGC 5194 | Sbc | 8.4 ± 1.0 | PNLF | 0.43 ± 0.06 | 2.7 | 0.22 | 8.7 | 4.25 ± 0.25 | 7_{-1}^{+3} | | 2006bc | II-P | NGC 2397 | SBb | 14.7 ± 2.6 | Kin. | 0.64 | 1.4 | 0.30 | 8.5 | < 4.43 | < 12 | | 2006my | II-P | NGC 4651 | Sc | 22.3 ± 2.6 | TF | 0.08 | 4.4 | 0.37 | 8.7 | < 4.51 | < 13 | | 2006ov | II-P | NGC 4303 | SBbc | 12.6 ± 2.4 | TF | 0.07 | 2.3 | 0.26 | 8.9 | < 4.29 | < 10 | | 2007aa | II-P | NGC 4030 | Sbc | 20.5 ± 2.6 | Kin. | 0.09 | 10.3 | 0.91 | 8.4 | < 4.53 | < 12 | | 2008bk | II-P | NGC 7793 | Scd | 3.9 ± 0.5 | TRGB | 1.0 ± 0.5 | 3.9 | 0.66 | 8.4 | 4.6 ± 0.1 | 9_{-1}^{+4} | Smartt et al. 2009,MNRAS : used Cambridge STARS code, homogeneous analysis, consistent luminosity and mass estimates ### Does a Salpeter/Scalo IMF fit? - Solid : Salpeter IMF maximum mass of 16.5M_o - Dashed : Salpeter IMF, maximum mass of 30M_☉ - Lower mass limit : 7-8M_⊙ (WD limits : Williams talk) # Maximum likelihood approach - $^{ullet}m_{\min}$: is better measured with the detections only. Unconstrained IMF if limits used. - m_{max} : calculated using both detections and limits: $$m_{\text{min}} = 8^{+1}_{-1.5} \, \text{M}_{\odot}$$ $$m_{\text{max}} = 16.5 \pm 1.5 \text{ M}_{\odot}$$ # The "red supergiant problem" - Most massive RSGs in MW and LMC are 25-30M_☉ - Where are these progenitors? - Would be the easiest to detect in the pre-explosion images - From Salpeter/Scalo IMF we would have expected 4-5 bright, massive progenitors - Do they produce IIn and II-L? Levesque et al 05,06 : new Teff for RSGs ### Probing the explosion - Chugai & Utrobin : hydro models of LCs - Factors of 2 -3 higher masses (2005cs, 2004et, 1999em...) See Posters : Kate Maguire (explosion energies) Melina Bersten (Hydro models) # ⁵⁶Ni mass *vs.* ejecta mass - Nomoto et al. 2006 : ejecta mass from lightcurve and spectral models - Assume WR stars and use stellar evolution models to determine initial mass - Faint, ⁵⁶Ni poor branch: fallback SNe from high mass stars - Direct progenitor identification results : - All faint II-P, have low KE, and low ⁵⁶Ni - No evidence of high mass progenitors - Large diversity in explosion energies between 7-16M_☉ Faint IIP: Pastorello et al. 09, 06 Kitaura et al. 04, Wanajo et al. 09 ## Wolf Rayet stars: not lbc progenitors? From Crockett 2009 (PhD Thesis), See also Van Dyk et al. 03 Maund & Smartt 05, Maund et al. 05 Gal-Yam et al. 05 - LMC (or M31) WR magnitude distributions ⇒ ~5-10% probability we have had no detections by chance - SN2008ax : detection of WNL progenitor of a IIb (Crockett et al. 08)₁₈ # Summary # Summary - Red supergiants are progenitors of II-P Sne (as predicted by Chevalier, Falk & Arnett) - Confident detections of 3 (+ several others) low luminosity progenitors : log L/L≈ 4.3± 0.3, colours imply M-type supergiants - Suggests these stars do NOT go through 2nd dredge up - Lower limit for core-collapse : no more than 7-8M_☉ - Lack of high mass progenitors statistically significant ? - No detection of Ibc progenitors the known massive WR population is not the progenitor population of Ibc SNe - Massive stars collapse to black holes we have not yet detected the SN ? $16 \rightarrow 60$? M sol #### Lessons Learned - 10 years of searching not as easy as first thought - 93 CCSNe within 28Mpc: ~32 with good pre-explosion images - 4 high significance, unambiguous detections. 3 questionable ones, plus 3 on unresolved host clusters - 5-10% yield (but large number of upper limits restrictive) - High resolution images (HST or 8m AO) crucial #### The future: - Extend to another 10-20 years (any takers....!) - Focus on the 10Mpc volume: HST MCTP for all high SFR galaxies (800 orbits). Huge legacy science (D. Calzetti) - Guaranteed ~15 CCSNe in 10 years. With full mosaic, deep WF3/ACS of the galaxies, discovery potential high # SN2008ax: IIb + WNL progenitor? Crockett et al. 2008, Pastorello et al. 2008 # 8m AO imaging - new approach Gemini + Altair : Crockett et al. 07 VLT + NACO : Mattila et al. 08 Gemini and VLT diffraction limited K-band AO images 0.08" and \sim 0.02" pixels = well sampled PSF Typical \sim 15 - 20 stars identified in common between K_S and V or I band Differential astrometry \sim 20 milliarcseconds RMS # Comparison of codes