

Observational constraints on the progenitors of II-P SNe

S. J. Smartt Astrophysics Research Centre Queen's University Belfast

Queen's SN & Massive star group: R. Kotak, A. Pastorello, D. Young, M.T. Botticella, S. Valenti, K. Maguire, D. Hunter, C. Trundle, K. Kjaer, M. Fraser, K. Smith, P. Dufton

Others: M. Crockett (Oxford) J. Eldridge (IoA), J. Maund (DARK), S. Mattila (Turku), J. Danziger (Trieste), A. Gal-Yam (Weizman), A. Stephens (Gemini)

Overview and motivation

- Direct constraints on progenitor stars
- Test of final stages of stellar evolution
- Consistency with spectral and lightcurve modeling?
- Range in energy and ejected masses: link to explosions?
- Black hole and NS formation : which stars

Testing theory

Heger et al. (2003); Eldridge & Tout 2004 : now can place observational constraints

Nearby SNe discovered by amateur astronomers, LOSS (Filippenko talk) and CHASE (Pignata poster)

Relative SN rates 10.5 yrs

Smartt et al., 2009

		Relative	Core-Collapse only			
Type	No.	/ per cent	/ per cent			
II-P	55	39.6	59.1			
II-L	2.5	1.8	2.7			
IIn	3.5	2.5	3.8			
IIb	6	4.3	6.5			
Ib	9	6.5	$9.7 \\ 18.3$			
Ic	17	12.2				
Ia	37	27.6				
LBVs	7	5.0				
Unclassified	2	1.4				
Total	139	100	100			
Total CCSNe	93	66	100			

- 19980101-20080630
- 139 SNe discovered in galaxies with V_{vir} <2000 kms⁻¹ (13.2 SNe yr⁻¹)

M101 ~26% SN-HST image coincidence rate. VLT:NGC3621, Bresolin et al. 01

NGC3949

Detection of progenitors

Figures from Smartt 2009 ARAA

- Within the volume limited, 10.5 yr survey for progenitors: three "gold" events
- SN2008bk, SN2005cs, SN2003gd
- Red star identified coincident with all three.
- Typical magnitudes : M_v ~ -4.5 ; M_I ~ -6.5
- Discovery papers :

Van Dyk et al. 03, Smartt et al. 04, Maund et al. 05, Li et al. 06, Mattila et al. 08.

The disappearance of 2003gd

SN2003gd: $V=25.8 \pm 0.15$ $V-I=2.5 \pm 0.2$ Smartt et al. 04, Van Dyk et al. 03

Maund & Smartt (2009)

Four confirmed cases of disappearance : SN1987A , SN1993J, SN2003gd,

SN2005gl (Gal-Yam, later...!)

Mass estimates from stellar evolutionary tracks

Red points: Milky Way red supergiants (Levesque et al. 2005)

STARS stellar evolutionary tracks

SN progenitors: SN2003gd (black), SN2005cs (blue box)

See Gezari talk – UV shock breakout from II-P SNe implies RSGs

Other examples: no detection

- **SN1999gi** in NGC3184,
- HST U+V pre-explosion
- D=11Mpc (Leonard et al. 2002)
- M ≤ 12 M_☉

- **SN2001du** in NGC1365
- HST *UVI* pre-explosion
- D=17Mpc (Cepheid Key P.)
- M ≤ 15 M_☉

Smartt et al. 02, Van Dyk et al 02

Summary of II-P progenitors: 10.5yr search

Supernova	SN Type	Galaxy	Galaxy Class	Distance Mpc Method		A_V	$r_{\rm G} \ m (kpc)$	$r_{ m G}/r_{25}$	[O/H] (dex)	$\log L/{ m L}_{\odot}$ (dex)	ZAMS (M _☉)
1999an	II	IC 755	SBb	18.5 ± 1.5	TF	0.40 ± 0.19	4.7	0.82	8.3	< 5.16	< 18
1999br	II-P	NGC 4900	SBc	14.1 ± 2.6	Kin.	0.06 ± 0.06	3.1	0.69	8.4	< 4.76	< 15
1999em	II-P	NGC 1637	SBc	11.7 ± 1.0	Cep.	0.31 ± 0.16	1.6	0.28	8.6	< 4.69	< 15
1999ev	II-P	NGC 4274	SBab	15.1 ± 2.6	Kin.	0.47 ± 0.16	5.3	0.46	8.5	5.1 ± 0.2	16^{+6}_{-4}
1999gi	II-P	NGC 3184	SABc	10.0 ± 0.8	Mean	0.65 ± 0.16	3.1	0.30	8.6	< 4.64	< 14
2001du	II-P	NGC 1365	SBb	18.3 ± 1.2	Cep.	0.53 ± 0.28	14.7	0.53	8.5	< 4.71	< 15
2002hh	II-P	NGC 6946	SABc	5.9 ± 0.4	Mean	5.2 ± 0.2	4.1	0.45	8.5	< 5.10	< 18
2003gd	II-P	NGC 628	Sc	9.3 ± 1.8	Mean	0.43 ± 0.19	7.5	0.58	8.4	4.3 ± 0.3	7^{+6}_{-2}
2003ie	II?	NGC 4051	SABb	15.5 ± 1.2	TF	0.04	7.3	0.66	8.4	< 5.40	< 25
2004A	II-P	NGC 6207	Sc	20.3 ± 3.4	Mean	0.19 ± 0.09	6.7	0.79	8.3	4.5 ± 0.25	7^{+6}_{-2}
2004am	II-P	NGC 3034	Sd	3.3 ± 0.3	Cep.	3.7 ± 2.0	0.64	0.14	8.7	Cluster	12^{+7}_{-3}
2004dg	II-P	NGC 5806	SBb	20.0 ± 2.6	Kin.	0.74 ± 0.09	4.3	0.50	8.5	< 4.45	< 12
2004dj	II-P	NGC 2403	SABc	3.3 ± 0.3	Cep.	0.53 ± 0.06	3.5	0.37	8.4	Cluster	15 ± 3
2004et	II-P	NGC 6946	SABc	5.9 ± 0.4	Mean	1.3 ± 0.2	8.4	0.92	8.3	4.6 ± 0.1	9^{+5}_{-1}
2005cs	II-P	NGC 5194	Sbc	8.4 ± 1.0	PNLF	0.43 ± 0.06	2.7	0.22	8.7	4.25 ± 0.25	7_{-1}^{+3}
2006bc	II-P	NGC 2397	SBb	14.7 ± 2.6	Kin.	0.64	1.4	0.30	8.5	< 4.43	< 12
2006my	II-P	NGC 4651	Sc	22.3 ± 2.6	TF	0.08	4.4	0.37	8.7	< 4.51	< 13
2006ov	II-P	NGC 4303	SBbc	12.6 ± 2.4	TF	0.07	2.3	0.26	8.9	< 4.29	< 10
2007aa	II-P	NGC 4030	Sbc	20.5 ± 2.6	Kin.	0.09	10.3	0.91	8.4	< 4.53	< 12
2008bk	II-P	NGC 7793	Scd	3.9 ± 0.5	TRGB	1.0 ± 0.5	3.9	0.66	8.4	4.6 ± 0.1	9_{-1}^{+4}

Smartt et al. 2009,MNRAS : used Cambridge STARS code, homogeneous analysis, consistent luminosity and mass estimates

Does a Salpeter/Scalo IMF fit?

- Solid : Salpeter IMF maximum mass of 16.5M_o
- Dashed : Salpeter
 IMF, maximum mass
 of 30M_☉
- Lower mass limit : 7-8M_⊙ (WD limits : Williams talk)

Maximum likelihood approach

- $^{ullet}m_{\min}$: is better measured with the detections only. Unconstrained IMF if limits used.
- m_{max} : calculated using both detections and limits:

$$m_{\text{min}} = 8^{+1}_{-1.5} \, \text{M}_{\odot}$$

$$m_{\text{max}} = 16.5 \pm 1.5 \text{ M}_{\odot}$$

The "red supergiant problem"

- Most massive RSGs in MW and LMC are 25-30M_☉
- Where are these progenitors?
- Would be the easiest to detect in the pre-explosion images
- From Salpeter/Scalo IMF we would have expected 4-5 bright, massive progenitors
- Do they produce IIn and II-L?

Levesque et al 05,06 : new Teff for RSGs

Probing the explosion

- Chugai & Utrobin : hydro models of LCs
- Factors of 2 -3 higher masses (2005cs, 2004et, 1999em...)

See Posters :
 Kate Maguire (explosion energies)
 Melina Bersten (Hydro models)

⁵⁶Ni mass *vs.* ejecta mass

- Nomoto et al. 2006 : ejecta mass from lightcurve and spectral models
 - Assume WR stars and use stellar evolution models to determine initial mass
 - Faint, ⁵⁶Ni poor branch: fallback SNe from high mass stars
 - Direct progenitor identification results :
 - All faint II-P, have low KE, and low ⁵⁶Ni
 - No evidence of high mass progenitors
 - Large diversity in explosion energies between 7-16M_☉

Faint IIP: Pastorello et al. 09, 06 Kitaura et al. 04, Wanajo et al. 09

Wolf Rayet stars: not lbc progenitors?

From Crockett 2009 (PhD Thesis), See also Van Dyk et al. 03 Maund & Smartt 05, Maund et al. 05 Gal-Yam et al. 05

- LMC (or M31) WR magnitude distributions ⇒ ~5-10% probability we have had no detections by chance
- SN2008ax : detection of WNL progenitor of a IIb (Crockett et al. 08)₁₈

Summary

Summary

- Red supergiants are progenitors of II-P Sne (as predicted by Chevalier, Falk & Arnett)
- Confident detections of 3 (+ several others) low luminosity progenitors
 : log L/L≈ 4.3± 0.3, colours imply M-type supergiants
- Suggests these stars do NOT go through 2nd dredge up
- Lower limit for core-collapse : no more than 7-8M_☉
- Lack of high mass progenitors statistically significant ?
- No detection of Ibc progenitors the known massive WR population is not the progenitor population of Ibc SNe
- Massive stars collapse to black holes we have not yet detected the SN ? $16 \rightarrow 60$? M sol

Lessons Learned

- 10 years of searching not as easy as first thought
- 93 CCSNe within 28Mpc: ~32 with good pre-explosion images
- 4 high significance, unambiguous detections. 3 questionable ones, plus 3 on unresolved host clusters
- 5-10% yield (but large number of upper limits restrictive)
- High resolution images (HST or 8m AO) crucial

The future:

- Extend to another 10-20 years (any takers....!)
- Focus on the 10Mpc volume: HST MCTP for all high SFR galaxies (800 orbits). Huge legacy science (D. Calzetti)
- Guaranteed ~15 CCSNe in 10 years. With full mosaic, deep WF3/ACS of the galaxies, discovery potential high

SN2008ax: IIb + WNL progenitor?

Crockett et al. 2008, Pastorello et al. 2008

8m AO imaging - new approach

Gemini + Altair : Crockett et al. 07

VLT + NACO : Mattila et al. 08

Gemini and VLT diffraction limited K-band AO images 0.08" and \sim 0.02" pixels = well sampled PSF Typical \sim 15 - 20 stars identified in common between K_S and V or I band Differential astrometry \sim 20 milliarcseconds RMS

Comparison of codes

