light curves of type Ia supernovae from different progenitor scenarios

daniel kasen

UC Santa Cruz

2-D delayed detonation models

width-luminosity relations for 2-dimensional delayed detonation models

44 models 30 viewing angles each
kasen, röpke, and woosley; nature (2009)

single degenerate progenitor system

R @1011-1012 cm (main sequence, $M=1-6 M_{\text {sun }}$)
R @10 ${ }^{13}$ cm (red giant; M @ $1 M_{\text {sun }}$)
$a / R=2-3$ in Roche lobe overflow

supernova companion interaction

Wheeler et al. (1975); Fryxell \& Arnett (1981); Livne et al. (1992); Marietta et al. (2000); Pakmor et al. (2008).

signatures of

 companion interactionsearch for tycho's companion ruiz-lapuente et al (2004) kerzendorf (2009)
search for stripped hydrogen mattila al al., (2005)
leonard et al., (2007)
supernova polarization
kasen et al., (2004)

signatures of

 companion interactionsearch for tycho's companion ruiz-lapuente et al (2004) kerzendorf (2009)
search for stripped hydrogen mattila al al., (2005)
leonard et al., (2007)
supernova polarization kasen et al., (2004)
could we see the collision itself? kasen, (2009)

SHOCK BREAKOUT IN SNIIP

photons escape when diffusion time @ dynamical time

SHOCK BREAKOUT IN SNIIP

 implicit monte carlo radiation hydrodynamicskasen \& woosley (2009 in prep)

sn2008d: soderberg et al (2008), modjaz et al (2009) snls-06D2dc: gezari et al (2008), schawinski (2008)

EARLY LUMINOSITY SN 2008D (from Modjaz et al. 2009)

$$
a \sim 10^{11}-10^{13} \mathrm{~cm}
$$

comparable length scale, velocities and temperatures as in core-collapse shock breakout
so does the collision produce an x-ray burst, followed by early UV/optical emission?
kasen 2009 apj submitted (astro-ph soon) analytic + some simulation

expansion

interaction timescale
$t_{i}=a / v$
$\simeq 3-8$ hours for RG $\simeq 5-20 \mathrm{mins}$ for MS

shock conditions

$\gamma=4 / 3$ (radiation dominated gas)

$$
\rho_{s}=\frac{\gamma+1}{\gamma-1}=7 \rho_{0}
$$

$$
p_{s}=\frac{2}{1+\gamma} \rho_{0} v^{2} \sin ^{2} \chi
$$

$$
\begin{aligned}
& p_{s}=\frac{a_{R} T^{4}}{3} \\
& T_{s}=2.8 \times 10^{6}\left(\frac{a}{10^{13} \mathrm{~cm}}\right)^{-3 / 4} \mathrm{~K}
\end{aligned}
$$

carving a hole

half opening angle

$$
\theta_{h}=30^{\circ}-40^{\circ}
$$

solid angle of shadowcone

$$
\frac{\Omega_{h}}{4 \pi} \approx \frac{1}{10}
$$

thickness of shell from mass conservation

$$
\begin{gathered}
\rho_{0} V_{h}=\rho_{\mathrm{s}} V_{\mathrm{sh}} \\
\frac{l_{\mathrm{sh}}}{a}=\frac{\Omega_{\mathrm{h}}}{4 \pi} \frac{2 \rho_{0}}{\rho_{s}} \approx \frac{1}{35}
\end{gathered}
$$

reclosing

lateral expansion to refill the hole on roughly the interaction timescale

$$
\mathrm{t} \sim \mathrm{a} / \mathrm{v}
$$

engulfed

the bulk of the ejecta remains very optically thick at these phase

prompt burst

diffusion time $=$ dynamical time

$$
\frac{l_{d}^{2} \kappa \rho_{s}}{3 c}=a / v
$$

$$
\frac{l_{d}}{l_{\mathrm{sh}}} \approx 3 \frac{a}{v_{\mathrm{t}} t_{\mathrm{sn}}}\left(\frac{4 \pi}{\Omega_{\mathrm{h}}}\right)
$$

$$
\begin{array}{ll}
\approx 1 / 3 & \text { for } \mathrm{RG} \\
\approx 0.1-0.01 & \text { for } \mathrm{MS}
\end{array}
$$

PROMPT X-RAY BURST

ANALYTICAL ESTIMATES

isotropic equivalent luminosity

$$
L_{\mathrm{x}}=5 \times 10^{44} M_{c}^{1 / 2} v_{9}^{5 / 2} \kappa_{e}^{-1 / 2} \operatorname{ergs~s}^{-1}
$$

visible from $\theta<\theta_{h}$ or $\Omega_{h} / 4 \pi=10 \%$ of the time
red giant
main sequence
$t_{i} \simeq 3-8$ hours
$t_{i} \simeq 5-20 \mathrm{mins}$
$T_{s} \simeq 0.1-0.2 \mathrm{keV} \quad T_{s} \simeq 1-5 \mathrm{keV}$
non-equilibrium, non-thermal effects
line fluorescence emission sub-structure and variability

temperature plot red giant $\mathrm{a}=2.5 \times 10^{13} \mathrm{~cm}$

EARLY LUMINOSITY

ANALYTICAL ESTIMATES

self-similar diffusion wave analysis (ala Chevalier 1992)

$$
L_{c}=C \frac{M v_{\mathrm{t}}^{2}}{t_{\mathrm{sn}}}\left(\frac{a}{v t_{\mathrm{sn}}}\right)\left(\frac{t}{t_{\mathrm{sn}}}\right)^{-4 /(n-2)}
$$

(isotropic equivalent comoving frame luminosity)
for density profile exponent $\mathrm{n}=10$

$$
\begin{aligned}
& L_{c}=10^{43}\left(\frac{a}{10^{13} \mathrm{~cm}}\right) t_{\text {day }}^{-1 / 2} \mathrm{ergs} \mathrm{~s}^{-1} \\
& T_{\text {eff }}=2.5 \times 10^{4}\left(\frac{a}{10^{13} \mathrm{~cm}}\right)^{1 / 4} t_{\text {day }}^{-37 / 72} \mathrm{~K} \quad(\mathrm{I} @ 1000 \mathrm{~A})
\end{aligned}
$$

SUPERNOVA COLLISION EMISSION

 observational prospects
SUPERNOVA COLLISION EMISSION

 observational prospectstests for the presence of a companion star appear within our observational grasp (x-ray bursts and early optical/UV luminosity)

SUPERNOVA COLLISION EMISSION

 observational prospectstests for the presence of a companion star appear within our observational grasp (x-ray bursts and early optical/UV luminosity)
the properties of the collision emission provide a straightforward measure of the separation distance

$$
t_{\text {xray }} \approx a / v \quad T_{\text {xray }} \propto a^{-3 / 4} \quad L(1 \text { day }) \propto a
$$

and hence the companion radius, assuming $a / R=2-3$

Supernova Collision Emission

 observational prospectstests for the presence of a companion star appear within our observational grasp (x-ray bursts and early optical/UV luminosity)
the properties of the collision emission provide a straightforward measure of the separation distance

$$
t_{\text {xray }} \approx a / v \quad T_{\text {xray }} \propto a^{-3 / 4} \quad L(1 \text { day }) \propto a
$$

and hence the companion radius, assuming $a / R=2-3$
it seems possible to acquire the collision signatures for a large number of supernovae

SUPERNOVA COLLISION EMISSION

 observational prospectstests for the presence of a companion star appear within our observational grasp (x-ray bursts and early optical/UV luminosity)
the properties of the collision emission provide a straightforward measure of the separation distance

$$
t_{\text {xray }} \approx a / v \quad T_{\text {xray }} \propto a^{-3 / 4} \quad L(1 \text { day }) \propto a
$$

and hence the companion radius, assuming $\mathrm{a} / \mathrm{R}=2-3$
it seems possible to acquire the collision signatures for a large number of supernovae
providing an empirical means of determining how the parameters of the progenitor system influence the supernova explosion

